• Title/Summary/Keyword: 3D Geo-spatial information

Search Result 97, Processing Time 0.026 seconds

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.

Correction of Geometric Distortion of Internet Aerial Imagery and Photo-Realistic 3D Building Modeling (인터넷 항공영상의 왜곡보정과 실감적 3차원 건물 모델링)

  • Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.687-695
    • /
    • 2011
  • Many internet portals provide maps with spatial information services. Recently, various images including aerial, satellite, street view, and photo-realistic 3D city models are provided as well as maps. This study suggested a method for geometric correction of the panoramic aerial images in the internet portal and 3D building modeling using information which is available in the internet. The key of this study is to obtain all necessary data easily from internet without restrictions. Practically, the ground control coordinates could be available from geo-referenced internet maps, and stereo pairs of the aerial images and close-range photographs for photo-realistic object modeling are provided by the internet service. However, the ground control points are not suitable for accurate mapping. RMSE of the plotting was about 9 meters and reduced upto 4 meters after coordinate transformation. The proposed methods would be applicable to various applications of photo-realistic object modeling which do not require high accuracy.

A Generation of Digital Elevation Model for GSIS using SPOT Satellite Imagery (GSIS의 자료기반 구축을 위한 SPOT 위성영상으로부터의 수치표고모형 생성)

  • Yeu, Bock-Mo;Park, Hong-Gi;Jeong, Soo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.141-152
    • /
    • 1993
  • This study aims to generate digital elevation model from digital satellite imagery. Digital elevation model is being increasingly used for geo-spatial information system database development and for digital map production. Image matching technique was applied to acquire conjugate image coordinates and the algorithm for digital elevation model generation is presented in this study The exterior orientation parameters of the satellite imagery is determined by bundle adjustment and standard correlation was applied for image matching conjugate of image points. The window as well as the searching area have to be defined in image matching. Different sizes of searching area were tested to study the appropriate size of the searching area. Various coordinate transformation methods were applied to improve the computation speed as well as the geometric accuracy. The results were then statistically analysed after which the searching area is determined with the safety factor. To evaluate the accuracy of digital elevation model, 3-D coordinates were extracted from 1/5000 scale topographic map and this was compared to the digital elevation model generated from satellite imagery. The algorithm for generation of digital elevation model generated from satellite imagery is presented in this study which will prove effective in the database development of geo-spatial information system and in digital elevation modelling of large areas.

  • PDF

3D Surface Representation and Manipulation Scheme for Web-based 3D Geo-Processing

  • Choe, Seung-Keol;Kim, Kyong-Ho;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.66-71
    • /
    • 1999
  • For given 3D geographic data which is usually of DEM(Data Elevation Model) format, we have to represent and manipulate the data in various ways. For example, we have to draw a part of them in drawing canvas. To do this we give users a way of selecting area they want to visualize. And we have to give a base tool for users to select the local area which can be chosen for some geographic operation. In this paper, we propose a 3D data processing method for representation and manipulation. The method utilizes the major properties of DEM and TIN(Triangular Irregular Network), respectively. Furthermore, by approximating DEM with a TIN of an appropriate resolution, we can support a fast and realistic surface modeling. We implement the structure with the following 4 level stages. The first is an optimal resolution of DEM which represent all of wide range of geographic data. The second is the full resolution DEM which is a subarea of original data generated by user's selection in our implemeatation. The third is the TIN approximation of this data with a proper resolution determined by the relative position with the camera. And the last step is multi-resolution TIN data whose resolution is dynamically decided by considering which direction user take notice currently. Specialty, the TIN of the last step is designed for realtime camera navigation. By using the structure we implemented realtime surface clipping, efficient approximation of height field and the locally detailed surface LOD(Level of Detail). We used the initial 10-meter sampling DEM data of Seoul, KOREA and implement the structure to the 3D Virtual GIS based on the Internet.

  • PDF

Estimation of the Available Green Roof Area using Geo-Spatial Data (공간정보를 이용한 옥상녹화 가용면적 추정)

  • Ahn, Ji-Yeon;Jung, Tae-Woong;Koo, Jee-hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.11-17
    • /
    • 2016
  • The purposes of this research are to estimate area of greenable roof and to monitor maintaining of green roofs using World-View 2 images. The contents of this research are development of World-View 2 application technologies for estimation of green roof area and development of monitoring and maintaining of green roofs using World-View 2 images. The available green roof areas in Gwangjin-gu Seoul, a case for this study, were estimated using digital maps and World-View 2 images. The available green roof area is approximately 12.17% ($2,153,700m^2$) of the total area, and the roof vegetation accounts for 0.46% ($80,660m^2$) of the total area. For verification of the extracted roof vegetation, Vworld 3D Desktop map service was applied. The study results may be used as a decision-making tool by the government and local governments in determining the feasibility of green roof projects. In addition, the project implementer may periodically monitor to see whether roof greening has maintained for efficient management of projects, and a vast amount of World-View 2 images may be regularly used before and after the projects to contribute to sharing of satellite images information.

A Study on Utilization of GNSS and Spatial Image for River Site Decision Supporting (하천 현장업무 의사지원을 위한 GNSS와 공간영상 활용방안에 관한 연구)

  • Park, Hyeon-Cheol;Choung, Yun-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.118-129
    • /
    • 2011
  • This Study has developed the information system of the rivers based on 3D image GIS by converging the latest information technology of GIS(Geographic Information System), RS(Remote Sensing), GNSS(Global Navigation Satellite System), aerial laser survey(LiDAR) with real time network technology in order to understand the current situation of all the four major rivers and support the administrative management system. The said information system acquires the high resolution aerial photographs of 25cm, aerial laser survey and water depth surveying data to express precise space information on the whole Youngsan River which is the leading project site out of the four river sites. Monitoring the site is made available on the transporting means such as a helicopter, boat or a bus in connection with locational coordinate tracking skill for the moving objects in real time using GNSS. It makes monitoring all the information on the four river job sites available at a glance, which can obtain the reliability of the people to such vast areas along with enhancing the recognition of the people by publicity of four Rivers Revitalizing Project and reports thereof.

GIS Database and Google Map of the Population at Risk of Cholangiocarcinoma in Mueang Yang District, Nakhon Ratchasima Province of Thailand

  • Kaewpitoon, Soraya J;Rujirakul, Ratana;Joosiri, Apinya;Jantakate, Sirinun;Sangkudloa, Amnat;Kaewthani, Sarochinee;Chimplee, Kanokporn;Khemplila, Kritsakorn;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1293-1297
    • /
    • 2016
  • Cholangiocarcinoma (CCA) is a serious problem in Thailand, particularly in the northeastern and northern regions. Database of population at risk are need required for monitoring, surveillance, home health care, and home visit. Therefore, this study aimed to develop a geographic information system (GIS) database and Google map of the population at risk of CCA in Mueang Yang district, Nakhon Ratchasima province, northeastern Thailand during June to October 2015. Populations at risk were screened using the Korat CCA verbal screening test (KCVST). Software included Microsoft Excel, ArcGIS, and Google Maps. The secondary data included the point of villages, sub-district boundaries, district boundaries, point of hospital in Mueang Yang district, used for created the spatial databese. The populations at risk for CCA and opisthorchiasis were used to create an arttribute database. Data were tranfered to WGS84 UTM ZONE 48. After the conversion, all of the data were imported into Google Earth using online web pages www.earthpoint.us. Some 222 from a 4,800 population at risk for CCA constituted a high risk group. Geo-visual display available at following www.google.com/maps/d/u/0/edit?mid=zPxtcHv_iDLo.kvPpxl5mAs90&hl=th. Geo-visual display 5 layers including: layer 1, village location and number of the population at risk for CCA; layer 2, sub-district health promotion hospital in Mueang Yang district and number of opisthorchiasis; layer 3, sub-district district and the number of population at risk for CCA; layer 4, district hospital and the number of population at risk for CCA and number of opisthorchiasis; and layer 5, district and the number of population at risk for CCA and number of opisthorchiasis. This GIS database and Google map production process is suitable for further monitoring, surveillance, and home health care for CCA sufferers.

Development of a Dike Line Selection Method Using Multispectral Orthoimages and Topographic LiDAR Data Taken in the Nakdong River Basins

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • Dike lines are important features for describing the detailed shapes of dikes and for detecting topographic changes on dike surfaces. Historically, dike lines have been generated using only the LiDAR data. This paper proposes a new methodology for selecting an appropriate dike line on various dike surfaces using the topographic LiDAR data and multispectral orthoimages taken in the Nakdong River basins. The fi rst baselines were generated from the given LiDAR data using the modified convex hull algorithm and smoothing spline function, and the second baselines were generated from the given orthoimages by the Canny operator. Next, one baseline was selected among the two baselines at 10m intervals by comparing their elevations, and the selected baseline at 10m interval was defined as the dike line segment. Finally, the selected dike line segments were connected to construct the 3D dike lines. The statistical results show that the dike lines generated using both the LiDAR data and multispectral orthoimages had the improved horizontal and vertical accuracies than the dike lines generated only using the LiDAR data on the various dike surfaces.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.