• 제목/요약/키워드: 3D Finite element analysis

검색결과 1,984건 처리시간 0.031초

삼차원 공간상에서의 질적인 삼각화에 관한 연구 (On Quality Triangulation in Three-Dimensional Space)

  • 박준영
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.215-222
    • /
    • 1997
  • This paper deals with the problem of generating a uniform tetrahedral mesh which fills a 3-D space with the tetrahedra which are close to the equilateral tetrahedra as possible. This problem is particularly interesting in finite element modeling where a fat triangulation minimizes the error of an analysis. Fat triangulation is defined as a scheme for generating an equilateral triangulation as possible in a given dimension. In finite element modeling, there are many algorithms for generating a mesh in 2-D and 3-D. One of the difficulties in generating a mesh in 3-D is that a 3-D object can not be filled with uniform equilateral tetrahedra only regardless of the shape of the boundary. Fat triangulation in 3-D has been proved to be the one which fills a 3-D space with the tetrahedra which are close to the equilateral as possible. Topological and geometrical properties of the fat triangulation and its application to meshing algorithm are investigated.

  • PDF

유한요소법을 이용한 3차원 관결함의 와전류탐상 수치해석 (Numerical Analysis of Eddy Currant Testing with Three Dimensional cracked Pipe by using Finte Element Method)

  • 원성연;이향범;신영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.220-222
    • /
    • 1999
  • This paper presents a numerical analysis of the eddy current testing with cracked pipe using finite element method (FEM). ${\vec{A}},\;{\phi}-{\vec{A}}$ method is adopted for the formulation of 3-dimensional(3-D) FEM with the brick element. The cracks investigated here are the inner and outer surface of axial symmetry, 90 degree circular one. The algorithm of 3-D numerical analysis is employed for the axisymmetric pipe with the cracks. In order to verify the validity of 3-D numerical analysis, the results are compared with those of 2-D analysis with the same type of the model. The differential impedance is obtained by using energy method and its locus are various 8-shaped curves for each cracks. The ICCG method is used for the calculation of a matrix.

  • PDF

용접부를 고려한 레이저 합체박판 성형공정의 3차원 유한요소 해석 (3-D FEM Analysis of Forming Process for Laser Welded Blank Considering Welded Zone)

  • 금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.14-17
    • /
    • 1999
  • The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welded zone(WZ) is modelled with several narrow finite elements whose material characteristics are analytically obtained from those of base metals based on the tensile tests. In order to show the reliability and effectiveness of weld element the forming process of hemispherical dome stretching and auto-body door inner panel stamping are simulated FEM predictions show good agreements with experimental observations.

  • PDF

변요소법을 이용한 3차원 와전류 문제의 유한요소 해석 (3D Finite Element Analysis of Eddy Current Using Edge Elements)

  • 홍승표;류재섭;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.262-264
    • /
    • 2000
  • A numerical method for the analysis of 3D eddy current in conductors due to applied time varying field is suggested using the finite element method. In the approximation of the field quantifies, the edge element is used, because it reduce the required computer memory and the computing time compared with the nodal elements. With edge elements, furthermore, the field governing equations become simple because the electric scalar potential ${\phi}$ can be set to zero. The modified magnetic vector potential($A^*$) is used as a state variable. The analysed results are compared with the experimentally measured ones for the TEAM workshop problem3.

  • PDF

Estimation of Stress Intensity Factors for 3-Dimensional Surface Defects under Axial Tensile Loads Using the Finite Element Method

  • Jeon, Byung-Young;Kumar, Y.V. Satish;Kang, Sung-Won
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.267-272
    • /
    • 2002
  • Pitting corrosion is a very common occurrence in marine structures. Therefore, the 3-D finite element analysis is carried out to determine the stress intensity factors at the pit depth and also at the surface of the pit. The pits are modeled as a part of sphere, based on the pit depth and the pit diameter as specified by the Ship Structural Committee. The pit depth and pit diameter are function of the percentage of pitting that the plate is subjected to. A dog-bone shaped specimen is subjected to different intensities of pitting and the stress intensity factors are determined under axial tensile loads.

  • PDF

트레드 블록을 고려한 타이어의 잔류 복원 토크 및 마찰 에너지에 대한 유한 요소 해석 (Finite Element Analysis on Residual Aligning Torque and Frictional Energy of a Tire with Detailed Tread Blocks)

  • 김기운;정현성;조진래;양영수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.173-180
    • /
    • 2004
  • The tread pattern of a tire has an important effect on tire performances such as handling, wear, noise, hydroplaning and so on. However, a finite element analysis of a patterned tire with detailed tread blocks has been limited owing to the complexity of making meshes for tread blocks and the huge computation time. The computation time has been shortened due to the advance in the computer technology. The modeling of tread blocks usually requires creating a solid model using a CAD software. Therefore it is a very complicated and time-consuming job to generate meshes of a patterned tire using a CAD model. A new efficient and convenient method for generating meshes of a patterned tire has been developed. In this method, 3-D meshes of tread pattern are created by mapping 2-D meshes of tread geometry onto 3-D tread surfaces and extruding them through tread depth. Then, the tread pattern meshes are assembled with the tire body meshes by the tie contact constraint. Residual aligning torque and frictional energy are calculated by using a patterned tire model and compared to the experimental results. It is shown that the calculated results of a patterned tire model are in a good agreement with the experimental ones.

유한요소해석을 위한 골판지 소재의 물성측정 및 분석 (Measurement and Analysis of the Material Behavior of Corrugated Paperboard for Finite Element Analysis)

  • 강규열;배덕근;노선종;진심원;강우종
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.143-149
    • /
    • 2024
  • 본 논문에서는 친환경 포장재인 골판지의 기계적 물성을 측정하고, 이를 LS-DYNA의 MAT_PAPER 모델에 적용하여 유한요소해석을 수행하였다. MAT_PAPER는 주로 종이의 거동을 모델링 하기 위한 재료모델이지만 본 연구를 통해 골판지에 대해서도 적용 가능함을 보였다. 인장, 압축, 전단 거동에 대하여 골판지의 방향별 기계적 물성을 측정 및 분석하고, 이를 바탕으로 6개의 항복면을 도출하여 MAT_PAPER 모델에 통합하였다. 재료시험 시편의 유한요소해석과 골판지 사각관의 저속 붕괴해석 결과를 각 실험 결과와 비교함으로써, 골판지의 거동을 등가적으로 잘 고려할 수 있음을 보였다. 그러나 해당 모델은 골판지의 변형률 속도효과를 고려하지 못하므로, 골판지의 원소재인 원심지의 고속물성을 측정하여 이를 보정하였으며, 이에 따라 골판지 사각관의 고속 압괴 실험 결과와 잘 일치함을 보였다.

3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구 (A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact)

  • 지국현;양정식;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

유한요소해석을 이용한 HCAE 공정의 가공 경로가 AZ61 마그네슘 합금의 변형 특성에 미치는 영향에 대한 연구 (Effects of Processing Routes on the Deformation Behavior of an AZ61 Mg Alloy by Half Channel Angular Extrusion(HCAE) using 3D Finite Element Analysis)

  • 이상익;윤종헌;김경진
    • 소성∙가공
    • /
    • 제23권3호
    • /
    • pp.151-158
    • /
    • 2014
  • Half channel angular extrusion(HCAE) is the integration of equal channel angular extrusion(ECAE), which is a well-known severe plastic deformation(SPD) method, with conventional forward extrusion in order to increase the strain per pass and effectiveness of the grain refinement. In the current study, the effects of processing routes during HCAE(Routes A, B, and C) on the strain distribution of the specimens have been investigated for an AZ61 Mg alloy by using three-dimensional finite element analysis. Comparisons with the results from a multi-pass of ECAE are made.

Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels

  • Strauss, Alfred;Mordini, Andrea;Bergmeister, Konrad
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.123-144
    • /
    • 2006
  • Reinforced concrete corbels are structural elements widely used in practical engineering. The complex response of these elements is described in design codes in a simplified manner. These formulations are not sufficient to show the real behavior, which, however, is an essential prerequisite for the manufacturing of numerous elements. Therefore, a deterministic and probabilistic study has been performed, which is described in this contribution. Real complex structures have been modeled by means of the finite element method supported primarily by experimental works. The main objective of this study was the detection of uncertainties effects and safety margins not captured by traditional codes. This aim could be fulfilled by statistical considerations applied to the investigated structures. The probabilistic study is based on advanced Monte Carlo simulation techniques and sophisticated nonlinear finite element formulations.