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On Quality Triangulation in Three-Dimensional Space*

R
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Abstract

This paper deals with the problem of generating a uniform tetrahedral mesh
which fills a 3-D space with the tetrahedra which are close to the equilateral
tetrahedra as possible. This problem is particularly interesting in finite element
modeling where o fat triangulation minimizes the error of an analysis. Fat
triangulation is defined as a scheme for generating an equilateral triangulation
os possible in a given dimension.

In finite element modeling, there are many algorithms for generating a
mesh in 2-D and 3-D. One of the difficulties in generating a mesh in 3-D
is that a 3-D object can not be filled with uniform equilateral tetrahedra only
regardless of the shape of the boundary. Fat triangulation in 3-D has been
proved to be the one which fills a 3-D space with the tetrahedra which are
close to the equilateral as possible. Topological and geometrical properties
of the fat triangulation and its application to meshing algorithm are
investigated.

1. Introduction objectis decomposed into a set of small
elements in order to be applied for an
Finite element modeling can be explained as engineering analysis. The set of small elements

a modeling scheme where a 2-D or 3-D is called a mesh. This mesh generation is
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important because the emror of an analysis can
be varied depending on the shape of mesh and
the mesh generation is time consuming process.
In the analysis, it has been known that the
triangulation which is close to an equilateral
triangulation is the most desirable [Strang 76].
Mesh generation algorithms have been studied
actively since the computer graphics was
applied in engineering. With the aid of
computer graphics, modeling process of an
analysis was able to be examined closely. In
3-D, several algorithms for generating a mesh
have been developed [Woo and Thomasma 83,
Yerry & Shephard 84, Cavendish 85, Frey &
Field 85, Chae 88, Dey, Bajaj & Sugihara 91,
Field and Smith 91, Michell & Vavasis 92,
Ruppert 93].

Among them, only a few considered the
effectiveness of the mesh configuration at the
mitial mesh generation stage. Furthermore,
even for these work, the shape a tetrahedral
mesh generated is far from the satisfactory.
One major difficulty of 3-D mesh generation
is that 3-D space can not be filled with the
equilateral tetrahedral mesh only [Field & Frey
85]. By a mathematician, a scheme for
geperating a uaiform triangulation in an n-
dimension was published satisfying the condi-
tion of equilateral triangulation as possible
[Todd 8§5]. In the following sections, the
scheme will be reviewed and the topological
as well as geometrical properties of the the
triangulation in 3-D are investigated. Also,

application of these properties to the mesh

generation algorithm is discussed.
2. Fat Triangulation

Todd, in 1983, developed an optimal linear
transformation of a certain regular triangulation
in an n-dimensional space so that the resulting
mesh can be uniform while satisfying the
condition of equilateral triangulation as possi-
ble. The transformation uses K1 triangulation
as a regular triangulation which was developed
in his earlier work. In K1 triangulation of an
n-dimensional space, an initial vertex is chosen
as any point in the integer lattice Z, Then each
subsequent vertex is obtained from its prede-
cessor by taking a unit step along a previously
unused coordinate direction. The cenvex hull
of the n+1 vertices so formed is a particular
simplex of K1, e.g. the convex hull of 0, ¢,
e + &, ..., + ..+ e Todd also introduced
a matrix A which transforms a K1 triangulation
inte a triangulation which is close to an
equilateral triangulation as possible and it was
proved that the matrix A is optimal.

The transform matrix A is,

A=A = o1+ e D6t {1

where ¢ denotes the unit vector matrix in a
given n-dimension. The triangulation generated
after applying A to the Ki triangulation is
called a fat triangulation because it is not
skewed to any particular directions. In the

following section we investigate the properties



of the fat triangulation in 2-D and 3-D.
3. Analysis of Fat Triangulation

K1 triangulation and the transform matrix A
were defined in n dimensions in order to
generate a fat triangulation. K1 triangulation in
3-D can be found if we consider n=3 in the
previous section. Figure 1 represents a KI

triangulation in 3-D.
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Figure 1. K1 triangulation in 3-D

One interesting property of this triangulation
1s that the volume of each simplex is identical.
For exampie, the volume of each tetrahedron
is 1/6, if the volume of the original cube is 1
in the Figure 1. Figure 2 shows the 6 tetrahedra
of the K! triangulation in 3-D.

In Figure 2, it can be seen that there are
two types of tetrahedra and one type is
symmetrical to the other. To observe the
topological information, we could consider an

interior vertex with 8 surrounding tetrahedra.
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Figure 2. A cube can be decomposed into 6
tetrahedra having same volume

The interior vertex is connected to 14 neigh-
boring vertices and these vertices make 24
tetrahedra. This topological information has an
important meaning for generating a tetrahedral
mesh in 3-D. This can be explained easily by
illustrating the analogy of 2-D, In 2-D object,
afier generating a mesh, any node is connected
to a certain number of edges. If a node is
connected to large number of edges, the
elements connected to the node will have acute
angles which are undesirable in finite element
modeling. On the other hand, if a node is
connected to a small number of edges, the
elements connected 1o the node will have
obtuse angles which are also undesirable. To
generate an equilateral triangulation, it can
easily be seen that the number of the edges
connected to a nede sheould be six since six

equilateral triangles can fill up a space around
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a node in 2-D, when there is no restriction on

the boundary of the space, as shown in Figure
3
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Figure 3. Two dimensicnal space filled with
equilateral triangles

In 3-D, however, any number of equilateral
-efrahedra can not fill up a space because an
angle defined by adjacent two faces in the
zquilateral tetrahedron is 72.221 degrees. By
examining the fat triangulations, we kaow the
aptimal number of edges connected to a vertex
to make an equilateral tetrahedral mesh as
possible.

In addition to the topological advantage we
have discussed thus far, there are also some
geometrical advantages for wusing the fat
triangulation in finite element modeling. To see
the geomeirical advamtages, let us see the fat
triangulation in 2-D first. We calculate the
transform matrix A by substituting r=2 in the

eguation 1.

243 1
(3573 3473
A= _
1 2+ 3

{

L3443 3403

This matrix converts a K1 triangulation into
a fat triangulation which is perfect equilateral
triangulation as in Figure 4.
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Figure 4. Linear transformation of K1
triangulation in 2-D

By using the similar method, the transform
matrix A in 3-D becomes,
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To find the fat triangulation in 3-D, we
multiply the vertices of 2 unit cube which is
decomposed by K1 triangulation into this
matrix. For example, one tetrahedron in the K1
triangulation is transformed into a fat friangu-

lation in the following way.

511 0521
(668 511 632
105 1] o121
6% 00 |06 32
100
66 6 ¥ 76 32
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Figure 5 represents the transformed form of
the K1 triangulation of a unit cube.

Figure 5. Transformed triangulated cube
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Figure 6. One tetrahedron from the fat
triangulation

As we can see from Figure 5, the connectiv-
ity information is same as the K1 triangulation
of a cube. Now we can evaluate the quality
of the fat triangulation by examining the
tetrahedron in Figure 6. One way of measuring
the closeness of a tetrahedron to an equilateral
tetrahedron is using a measure called normal-
ized ratio. To calculate the normalized ratio,
/R (r: radius of the inscribed sphere for a
given tetrahedron, R: radius of the circum-
scribed sphere for a given tetrahedron) is

calculated first and this value is normalized to
have the value of one for an egquilateral
tetrahedron. The normalized ratic for the
transformed tetrahedron is calculated as follows:

Volume 1 r
® X SurfoeArea * CircumRadis [ ‘3XEJ
1
=9 X X L
4 X %ﬁ s
A2z
= 3? 5
= (09487

To compare the quality of the fat triangula-
tion with other existing trianguiation algorithms,
we introduce a 3-D mesh generation algorithm
which dealt with the quality of a mesh. [Fietd
& Frey 85] In this algorithm, they used some
properties of icosahedron, Icosahedron is a
regular convex poiyhedron which conists of 20
equilateral triangles on the surface. Figure 7
depicts an icosahedron.

To generate 3-D mesh, icosahedra are
stacked up to fill up a 3-D space. For each
icosahedron, a node is generated at the center
of the icosahedron and vertices of the
icosahedron is connected to the center node to
tetrahedral

icosahedron. After stacking up icosahedra,

generate elements inside the
there are empty spaces among the neighboring
icosahedra. These spaces are also can be filled
with tetrahedral elements and the normalized
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Figure 7. lcosahedron

ratio for these element couid be calculated. The
normalized ratio for the tetrahedral elements
inside the icosahedron is 0.9964 and the
smallest normalized ratio of the elements which
fill the space among icosahedra is 0.7681. In
another triangularion, where a cube is decom-

posed into 6 tetrahedra, the maximum and

Table 1. Comparison of Triangulation

Fat Icosahedral Cube
trianguiation | triangulation | trianguation
Maximum
normalized| 0.9487 0.9964 0.73205
ratio
Minimum
normalized; 0.9497 0.7681 0.62299
ratio | |

minimum values of normalized ratio are
0.73205 and 0.62299 each. Since the error of
an analysis depends on the worst shaped
element [Strang 76], fat triangulation is more
suitable than any other approach known thus
far in the finite element modeling. These results

can be summarized as Table 1.

4. Application

The fat triangulation could be used in several
ways to generate a 3-D mesh. For example, in
the Delaunay triangulation approach [Cavendish
85], the shape of the element depends on the
node distribution, Delaunay triangulation ap-
proach generates interior and boundary nodes
inside and on a 3-D object and triangulates the
object using a particular wiangulation called
Delaunay triangulation. One of the difficulties
in this method is to generate interior node
which introduces tetraheral elements with high
normalized values. Topological and geometrical
informations studied in this paper can be used
1o provide the interior nede distribution.

In the other approach called modified octree
approach, Shephard and Yerry in 1984 de-
veloped an algorithm generating tetrahedral
elements using the idea of octree encoding. In
this method, a cube is decomposed into 5 or
6 tetrahedra to make tetrahedral elements. We
can apply the idea of fat triangulation in the
octree-based approach. One modification is as
follows. Apply the modified-octree approach to
a parallelepiped which is the linear transforma-
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tion done by multiplying K1 triangulation and
A matrix from Equation 1. In this modification,
a parallelepiped can be decomposed into 8
identical parallelepiped and each parallelepiped
can be decomposed into 6 tetrahedra using the
fat triangulation. This will provide the better
shape of tetrahedra. Everything including grad-
ed mesh in the existing modified-octree ap-
proach can be directly used except the
substitution of a cube with a parallelepiped.
However, we can not use the integer tree
structure. Although it is conjectured ihat a
parallelepiped could be used instead of a cube
in octree data structure without having any
difficulty, possible break-downs should be

closely reviewed.

5. Conclusion and Future Research

In this research, we investigated the proper-
ties of the Todd’s fat triangulation and the
application of the triangulation into the finite
element mesh generation. In the topelogical
aspect, the number of edges to be commected
te an interior edge in order to be an equilateral
uniform mesh as possible is identified as 14.
This information can be used in the postpro-
cessing step of a 3-D mesh generation
algorithm where the connectivity of a mesh
could be changed to improve the shape of the
triangulation. In the geometrical aspect, large
normalized ratio (0.9487) is identified which is
the substantial improvements compare to the

triangulations which are used in the existing 3-

D mesh generation algorithms. Application of
the fat triangulation into the Delaunay triangu-
lation approach, and modified-octree approach
were also illustrated. To complete the 3-D
meshing algorithm, in both approaches, boun-
dary node generation scheme and the triangula-
tion scheme to connect boundary nodes and
interior nodes should be investigated further.

These remain as future research areas.
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