• Title/Summary/Keyword: 3D Building Height Extraction

Search Result 20, Processing Time 0.026 seconds

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

SEMI-AUTOMATIC 3D BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES

  • Javzandulam, Tsend-Ayush;Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.606-609
    • /
    • 2006
  • Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results.┌阀؀䭏佈䉌ᔀ鳪떭臬隑駭验耀

  • PDF

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

Automatic Extraction of Building Height Using Aerial Imagery and 2D Digital Map (항공사진과 2차원 수치지형도를 이용한 건물 고도의 자동 추출)

  • Jin, Kyeong-Hyeok;Hong, Jae-Min;Yoo, Hwan-Hee;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.65-69
    • /
    • 2005
  • Efficient 3D generation of cultural features, such as buildings in urban area is becoming increasingly important for a number of GIS applications. For reconstruction or 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly. In case of automatically extracting and reconstructing of building height using single aerial images or single satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches or integrating optical images and existing 2D GIS data(e.g. digital map) has been in progress. In this paper, we focused on extracting of building height by means or interest points and vortical line locus for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images(1/5,000) and existing digital map(1/1,000).

  • PDF

Fusion of LIDAR Data and Aerial Images for Building Reconstruction

  • Chen, Liang-Chien;Lai, Yen-Chung;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.773-775
    • /
    • 2003
  • From the view point of data fusion, we integrate LIDAR data and digital aerial images to perform 3D building modeling in this study. The proposed scheme comprises two major parts: (1) building block extraction and (2) building model reconstruction. In the first step, height differences are analyzed to detect the above ground areas. Color analysis is then performed for the exclusion of tree areas. Potential building blocks are selected first followed by the refinement of building areas. In the second step, through edge detection and extracting the height information from LIDAR data, accurate 3D edges in object space is calculated. The accurate 3D edges are combined with the already developed SMS method for building modeling. LIDAR data acquired by Leica ALS 40 in Hsin-Chu Science-based Industrial Park of north Taiwan will be used in the test.

  • PDF

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

AUTOMATIC 3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE AND DIGITAL MAPS

  • Kim, Hye-Jin;Byun, Young-Gi;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.238-242
    • /
    • 2007
  • Today's commercial high resolution satellite imagery such as that provided by IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Digital maps supply the most generally used GIS data probiding topography, road, and building information. Currently, the building information provided by digital maps is incompletely constructed for GIS applications due to planar position error and warped shape. We focus on extracting of the accurate building information including position, shape, and height to update the building information of the digital maps and GIS database. In this paper, we propose a new method of 3D building information extraction with a single high resolution satellite image and digital map. Co-registration between the QuickBird image and the 1:1,000 digital maps was carried out automatically using the RPC adjustment model and the building layer of the digital map was projected onto the image. The building roof boundaries were detected using the building layer from the digital map based on the satellite azimuth. The building shape could be modified using a snake algorithm. Then we measured the building height and traced the building bottom automatically using triangular vector structure (TVS) hypothesis. In order to evaluate the proposed method, we estimated accuracy of the extracted building information using LiDAR DSM.

  • PDF

A Study on 3D Reconstruction of Urban Area

  • Park Y. M.;Kwon K. R.;Lee K. W.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.470-473
    • /
    • 2005
  • This paper proposes a reconstruction method for the shape and color information of 3-dimensional buildings. The proposed method is range scanning by laser range finder and image coordinates' color information mapping to laser coordinate by a fixed CCD camera on laser range finder. And we make a 'Far-View' using high-resolution satellite image. The 'Far-View' is created that the height of building using DEM after contours of building extraction. The user select a region of 'Far View' and then, appear detailed 3D-reconstruction of building The outcomes apply to city plan, 3D-environment game and movie background etc.

  • PDF

Building Height Extraction using Triangular Vector Structure from a Single High Resolution Satellite Image (삼각벡터구조를 이용한 고해상도 위성 단영상에서의 건물 높이 추출)

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Extraction of 3D building information from high resolution satellite imagery is one of the most active research topics. There have been many previous works to extract 3D information based on stereo analysis, including sensor modelling. Practically, it is not easy to obtain stereo high resolution satellite images. On single image performance, most studies applied the roof-bottom points or shadow length extracted manually to sensor models with DEM. It is not suitable to apply these algorithms for dense buildings. We aim to extract 3D building information from a single satellite image in a simple and practical way. To measure as many buildings as possible, in this paper, we suggested a new way to extract building height by triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and decrease the digitizing error and the computation efficiency.

EXTRACTING COMPLEX BUILDING FROM AIRBORNE LIDAR AND AIRBORNE ORTHIMAGERY

  • Nguyen, Dinh-Tai;Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • Many researches have been tried to extract building models and created a 3D cyber city from LiDAR data. In this paper, the approach of extracting complex building by using airborne LiDAR data combined with airborne orthoimagery has been performed. The pseudo-building elevations were derived from modified discrete return LiDAR data. Based on information property of the pseudo-height, building features could be extracted. The results of this study indicated the improvement of building extraction.

  • PDF