• Title/Summary/Keyword: 3D 프린팅 콘크리트

Search Result 36, Processing Time 0.022 seconds

Strength Characteristics of 3D Printed Composite Materials According to Lamination Patterns (적층 패턴에 따른 3D 프린팅 복합재료의 강도특성)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.193-198
    • /
    • 2021
  • In this study, the rheological characteristics and of 3D printing composite materials and the compressive strength characteristics according to the lamination patterns were evaluated. As a result of rheology test, rapid material change was observed after 60 minutes of extrusion, yielding stress 1.4 times higher than immediately after mixing, and plastic viscosity was 14.94-25.62% lower. The compressive strength of the specimens manufactured in the mold and the laminated specimens were compared, and the lamination pattern of the laminated specimens were 0°, 45°, and 90° as variables. The compressive strength of the mold casting specimen and the laminated specimen from 1 to 28 days of age showed similar performance regardless of the lamination pattern. In particular, at the age of 28 days, the modulus of elasticity, maximum compressive strength, and strain at maximum stress of all specimens were almost the same. In order to analyze the interface of the laminated specimens, X-ray CT analysis of the specimen whose compressive strength were measured was performed. Through CT analysis, it was confirmed that cracks did not occur at the lamination interface, which can be judged that the interface in the laminated specimen behaved in an integrated manner.

Development of Productivity Analysis Simulation Model for Formwork Based on 3D Printing Technology Using ARENA (ARENA를 활용한 3D 프린팅 기술 기반 거푸집 공사의 생산성 분석 시뮬레이션 모델 개발)

  • Ahn, Heejae;Lee, Changsu;Kim, Harim;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.188-189
    • /
    • 2021
  • The technology of manufacturing freeform molds with S-LOM based 3D printer has advantages in the production period and the curvature range. However, there is no any support tool about productivity analysis of S-LOM technology because S-LOM technology is early-stage technology. There can be problems about increase of construction time and cost without any decision support tool like productivity analysis models etc. Therefore, in this study, the productivity analysis simulation model for freeform formwork based on S-LOM technology was developed using ARENA software. The process and logic of manufacturing freeform molds can be easily visualized in this model. Futhermore, the resource like labor, equipment and material can be easily optimized with this model. As a result, it can contribute to preventing the increase of construction time and cost in formwork with further productivity analysis.

  • PDF

Investigation on the Development of 3D Concrete Printing(3DPC) Technology Using Coarse Aggregation (굵은 골재를 이용한 3D 콘크리트 프린팅 기술개발에 대한 연구)

  • Hwang, Jun Pil;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.66-77
    • /
    • 2022
  • Digitization and automation technologies have rapidly maximized productivity and efficiency in all industries over the past few decades. Construction automation technology has either stagnated over the same period or has not kept pace with overall economic productivity. According to the research studies up to now, the output of concrete structures using coarse aggregates (8mm or more) is very limited due to the limitations of equipment and materials. In this study, information on the development process of 3DCP equipment that can print concrete structures with the printing width (100 mm or more) and printing thickness (30 mm or more) using a 3DCP material mixed with coarse aggregate (8 mm or more) is provided. To verify the performance of the developed 3DCP equipment, experimental data are provided on output variables, the number of layers, and the inter-layer printing time interval. The evaluation and verification data of various mechanical properties (compressive and splitting tensile strength) of printed materials using coarse aggregates are provided.

Resonance frequency analysis of 3D printed self-healing capsules for localization of self-healing capsules inside concrete using millimeter wave length electromagnetic waves (밀리미터 전자기파를 이용한 콘크리트 내부 자가치유 캡슐의 위치 측정을 위한 3D 프린팅 자가치유 캡슐의 공진 주파수 분석)

  • Lim, Tae-Uk;Cheng, Hao;Lee, Yeong Jun;Hu, Jie;Kim, Sangyou;Jung, Wonsuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.243-244
    • /
    • 2022
  • In this paper, experiments were conducted on signal amplification of polymer capsules for application to Ground Penetrating Radar so as to enable real-time monitoring of polymer capsules inside concrete using the Morphology Dependent Resonance phenomenon. A TEM CELL and a vector network analyzer were used to analyze the difference in resonance frequency depending on the material of the sphere and the presence or absence of fracture. In order to manufacture a capsule of a size that can be measured using millimeter waves used in GPR, we manufactured a capsule with a 3D printer and analyzed the effects of the presence or absence of coating and the size of the capsule on the resonance frequency. Resonant frequency or signal amplification is more affected by diameter than coating. The capsule showing the highest amplification is the resin-coated 50 mm diameter capsule with a 316-fold increase and the lowest capsule is the uncoated 10 mm diameter capsule with a signal amplification of 11.9 times. These results demonstrate the potential of GPR to measure the position and state of self-healing capsules, which are small-sized polymers, in real time using millimeter waves.

  • PDF

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.