• Title/Summary/Keyword: 3D 직조

Search Result 26, Processing Time 0.03 seconds

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.

Impact Properties of 2D and 3D Textile Composites (2D 및 3D 직조형 복합재료의 충격특성)

  • Byun, Joon-Hyung;Um, Moon-Kwang;Hwang, Byung-Sun;Song, Seung-Wook;Kang, Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.91-94
    • /
    • 2003
  • Laminated composites are liable to fatal damage under impact load due to the fact that they have no reinforcement in the thickness direction. To overcome the inherent weakness, three dimensional (3D) textile reinforcements have drawn much interests. In this paper, impact performance of 2D and 3D textile composites has been characterized. For 2D composites, fiber bundle size and fiber pattern have been varied. For 3D composites, orthogonal woven preforms of different density and type of through-thickness fibers have been studied. To assess the damage after the impact loading, specimens were subjected to C-scan nondestuctive inspection. Compression after impact (CAI) were also conducted in order to evaluate residual compressive strength.

  • PDF

Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms (3차원 직조형 금속복합재료의 제조와 특성분석)

  • 이상관;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

Compressive Characteristics of New Wire-woven Cellular Metal (새로운 와이어 직조 다공질 금속의 압축 특성)

  • Ko, Gyeong-Deuk;Lee, Ki-Won;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1659-1666
    • /
    • 2010
  • In this study, a new type of wire-woven cellular metal named WBD(wire-woven bulk diamond) was developed. Like WBK(wire-woven bulk Kagome), WBD is composed of helically formed wires; WBK was introduced a few years ago, and its mechanical, thermal properties, and engineering applications have been extensively investigated. The number of wires that pass by one another at each cross point in WBD is four, whereas that in WBK is three. The mechanical behavior of WBD subjected to compression was investigated and the results were compared to those for WBK. For a given slenderness ratio the density and yield strength of WBD were about twice as high as those for WBK, but elastic stiffness of WBD was not that higher than that for WBK.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Direct Manipulation based Trajectory Inserting and Editing Methods for ARtalet Authoring Tool (디지로그 북 저작을 위한 감각형 조작 도구를 이용한 직조작 기반의 3D 객체의 이동궤적 삽입 및 편집 기술)

  • Ha, Tae-Jin;Lee, Young-Ho;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.497-501
    • /
    • 2009
  • 'Digilog Book' integrates advantages of existing paper book and immersive digital contents in augmented reality environment, which enables users to feel physical touch and get additional multisensory feedback. As a high level authoring user interface, 'ARtalet' provides an intuitive way to make Digilog Book through 3D user interface in augmented reality environment. This paper mentions trajectory inserting and editing methods of 3D objects, then combining method of the trajectory. 3D object is selected by camera tracked prop, and then transformation matrix relative to book plane is stored in real time based on timeframe. The saved trajectory is managed as templates, and user can make various compositions of trajectories. We expect that suggested methods can enhance interest of readers.

  • PDF

Fabrication and Evaluation of Wear Properties of CF/GNP Composites (Graphene Nanoplatelets을 첨가한 탄소직조복합재료의 제조 및 마모 특성 평가)

  • Kim, S.J.;Park, S.B.;Huh, C.H.;Song, J.I.
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • CNT and GNP have several excellent mechanical properties including, high strength, Young's modulus, thermal conductivity, corrosion resistance, electronic shielding and so on. In this study, CF/CNT, GNP/epoxy composites were manufactured by varying the CNT weight ratio at 2wt% and 3wt%, GNP weight ratio at 0.5wt% and 1 wt%. The composites were manufactured by mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D638, D256 and D3181 respectively. The results showed that, CF/GNP0.5 wt%/epoxy composites gave good mechanical property in all composites, e.g., tensile strength, impact and were resistance.

Ceramic Matrix Composites의 내산화 코팅이 초고온 산화 특성에 미치는 영향

  • Jeon, Min-Gwang;Yu, Yeon-U;Nam, Uk-Hui;Byeon, Eung-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.134-134
    • /
    • 2016
  • CMC(Ceramic Matrix Composites)는 $1500^{\circ}C$ 이상의 고온에서 내열성, 내산화성, 내식성이 우수하여, 초음속 비행체, 가스터빈 엔진 및 원자로용 초고온 부품 등에 수요가 증가하고 있다. 하지만 이러한 특성은 비산소 환경에 국한되는 것으로 약 $400^{\circ}C$ 이상의 산화 분위기에는 탄소섬유가 산화되는 문제로 인하여 적용의 한계를 가지고 있다. 따라서 CMC의 적용범위 확대를 위하여 내산화 코팅으로 CMC의 초고온 산화특성을 개선하는 것이 필수적이며, 장시간 초고온 산화환경 분위기에서 사용되기 위하여 안정적인 코팅기술이 최근 기술개발의 핵심현안으로 부각되고 있다. 본 연구에서는 pack cementation 공정을 이용하여 내산화성이 우수한 SiC 코팅층을 제조하였다. Pack cementation 공정에 사용된 코팅 분말은 57wt.% SiC, 30wt.% Si, 3wt.% B, 10wt.% Al2O3의 비율로 혼합된 것이다. 실험은 3D 직조된 CMC 모재를 혼합분말 내에 침적한 후, Ar 분위기에서 $1600^{\circ}C$, 4~12시간 반응시켜 수 마이크론 두께의 SiC 코팅층을 형성하였다. 더 우수한 산화 특성을 부여하기 위하여 pack 처리된 CMC 표면에 초고온 세라믹인 TaC 소재를 진공플라즈마 코팅 공정으로 적층시켰다. 제조된 코팅층을 SEM, XRD를 이용하여 미세구조 및 결정구조를 분석하였으며, pack cementation에 따른 내산화 특성을 비교 분석하고자 $2000^{\circ}C$에서 산화 실험을 진행하였다. 산화 실험 이후 미세구조 및 결정구조 분석으로 산화거동을 규명하고자 하였다.

  • PDF

Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model (피로누적손상을 이용한 직조 CFRP의 피로수명 예측)

  • Jang, Jae-Wook;Cho, Je-Hyoung;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

A Study of Carbon NCF Prepreg Manufacturing and Stacking Pattern Optimal Design Using Structure Analysis (CFRP 적용을 위한 Carbon NCF Prepreg 제작 및 구조해석을 활용한 적층패턴 최적설계 연구)

  • Kim, S.;Shin, H.C.;Ha, Sung Kyu
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Recently, the fire rescue truck in problem proceed research it for the fast works action and for pass the small road. So we were research for weight reduction. In this study, the (NO. 5) fifth boom of the fire rescue truck have 288 mm(W) × 299 mm(D) × 3,691 mm(L) with a maximum load of 876 kg and the thickness of 3 mm of the Steel Boom. This changing of Steel (STRENX960) to CFRP was weave Carbon Fiber NCF (±45°, 2axis) and then it make the NCF Prepreg. This process was designed based on structural analysis, the effects of NCF Prepreg (±45°) on torsion were identified, and the optimal design was made with Stacking Pattern (b). Stack patterns were optimized for levels equal or higher than existing Steel Boom and CFRP Boom stacked in the UD direction, and finally, the lightening effect on weight of approximately 49.6% of the steel was identified.