• Title/Summary/Keyword: 3D 모델링 프로그램

Search Result 232, Processing Time 0.025 seconds

A CORBA-Based Collaborative Work Supported Medical Image Analysis and Visualization System (코바기반 협업지원 의료영상 분석 및 가시화 시스템)

  • Chun, Jun-Chul;Son, Jae-Gi
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.109-116
    • /
    • 2003
  • In this paper, a CORBA-based collaborative medical image analysis and visualization system, which provides high accessibility and usability of the system for the users on distributed environment is introduced. The system allows us to manage datasets and manipulates medical images such as segmentation and volume visualization of computed geometry from biomedical images in distributed environments. Using Bayesian classification technique and an active contour model the system provides classification results of medical images or boundary information of specific tissue. Based on such information, the system can create real time 3D volume model from medical imagery. Moreover, the developed system supports collaborative work among multiple users using broadcasting and synchronization mechanisms. Since the system is developed using Java and CORBA, which provide distributed programming, the remote clients can access server objects via method invocation, without knowing where the distributed objects reside or what operating system it executes on.

Development of Design Support Tool for Building 3D printing (건축물 3D 프린팅 설계지원도구 개발)

  • Lee, Dongyoun;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.94-105
    • /
    • 2020
  • Recently, most studies of 3D printing in construction have focused on the development of 3D printers and materials suitable for construction 3D printers. In comparison, there has been little research on design support tools that enable representative BIM data of building modeling tools to be applied to 3D printing. In addition, existing 3D printing slicing programs are commercialized around manufacturing, showing that they are unsuitable for construction 3D printing. Therefore, this research aims to develop a design support tool for 3D printing for buildings. The developed design support tool was validated based on arbitrary BIM data. Verification showed that wall pattern generation was modeled accurately without errors, and a calculation of the construction period showed that the formula presented in this study was valid. Furthermore, the maximum length of the mesh split was set to 100mm to minimize errors when converting to STL files.

A Study on Development of Design Support Tool for Building 3D Printing (건축물 3D 프린팅 설계지원도구 개발에 대한 연구)

  • Park, Hyung-Jin;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.182-189
    • /
    • 2019
  • 3D printing technology is changing the paradigm of consumer-oriented design in supplier-oriented mass production. 3D printing technology in construction is expected to be able to replace existing wet methods along with modular construction. Recently, a number of cases of building construction using 3D printing using mortar-based materials have been announced in many regions, including North America, Europe, and Asia. In this study, we developed a design support tool with a slicing function to output 3D modeling for architecture for a 3D printing machine. We analyzed the process and the function of slicing programs that are commercially available. Seven slicing functions required for the architectural field were derived by analyzing cases, expert reviews, and related literature. The derived functions were extended from the slicing functions to develop the design support tools. Detailed algorithms and processes need to be developed for future derived functions.

Development of Earth-Volume Estimation Program using the precise LiDAR DEM (고정밀 LiDAR DEM을 이용한 토공량 계산 프로그램 개발)

  • Lee, Jin-Nyoung;Lee, Done-Ha;Lee, Young-Kyun;Suh, Yong-Cheol
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.143-161
    • /
    • 2010
  • In this study, EWS (Earth Work System), the earth-volume estimation program was developed in a way that could enhance efficiency of civil engineering construction through precise earth-volume modeling based on the 3D geospatial information. In this program, it is possible to estimate the precise earth-volume using LiDAR DEM and to establish the earth work plans based on the unit workload of the construction equipments. Also, EWS program can support the 3D visualization of the final results through Google Earth in order to understand intuitively or share the results of earth-volume estimation in the construction project. For verifying the possibility of appling EWS program to construction project, the construction site of Shin-Pochun substation in Shinbuk-myun, Pochon-City, Kunggi Province was selected as a study area and the results of earth-volume and earth work plans estimated from EWS program were compared with those of DAS program. As a result of comparison between EWS and DAS program, the more accurate earth-volume can be estimated by using 3D geospatial information and more reasonable earth work plan can also be established when use the EWS program was developed in this study. Thus, EWS program can enables improvement of productivity by establishing efficient construction plan in the construction site.

A Study on the Modeling of Limit Gauge far Measuring Axis and Hole using Automatic Design Program (자동설계 프로그램을 이용한 축 및 홀 측정용 한계게이지 모델링에 관한 연구)

  • 김성욱;이승수;김민주;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.604-607
    • /
    • 2002
  • In this study, we will try to develop the 3D automatic design program of limit gauge. When users, who have some mechanical information, input some date, they can do 3D-modeling easily like expert. This is one of the merit in automatic design program and the automatic design program can compare the limit gauge made in this study with processed the bolt and nut model. This demonstrates the effective value of automatic design model. Limits gauge of sort divide into ring gauge of measuring bolt and pin gauge of measuring nut. The new automatic design program follows the KS.

  • PDF

A Study on the Modeling of Screw Thread Limit Gauge using Automatic Design Program (자동설계 프로그램을 이용한 나사용 한계게이지 모델링에 관한 연구)

  • 김태호;김민주;이승수;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.595-599
    • /
    • 2002
  • In this study, we try to develop the 3D automatic design program of screw thread limit gauge. When users, who have some mechanical information, input some date, they can do 3D-modeling easily like expert. This is one of the merit in automatic design program and the automatic design program can compare screw thread limit gauge made in this study with processed the bolt and nut model. This demonstrates the effective value of automatic design model. Screw thread limit gauge of sort divide into ring gauge of measuring bolt and pin gauge of measuring nut. The new created automatic design program follows the KS.

  • PDF

Numerical study on rock fragmentation by TBM disc cutter (TBM 디스크 커터의 암석절삭에 관한 수치해석적 연구)

  • Cho, Jung-Woo;Yu, Sang-Hwa;Jeon, Seok-Won;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.139-152
    • /
    • 2008
  • A series of numerical experiments were carried out to simulate the rock cutting behavior by TBM disc cutter in a given took condition. AUTODYN-3D, a commercial program capable of simulating three-dimensional dynamic failure, was utilized to carry out the numerical tests over four different disc cutter spacing conditions. After modelling three-dimensional geometries of disc cutter and rock specimen, the linear cutting tests by a disc cutter were simulated for eight different types of rocks. The numerical result, that is the optimum cutter spacing for isotropic rocks had the good agreements with those from linear cutting test. However, for relatively anisotropic or jointed rocks, the specific energy obtained from the numerical tests was almost two-times bigger than the real linear cutting results. Therefore, to simulate cutting procedures for anisotropic rocks realistically, further studies would be necessary.

  • PDF

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

A Slice-based Complexity Measure (슬라이스 기반 복잡도 척도)

  • Moon, Yu-Mi;Choi, Wan-Kyoo;Lee, Sung-Joo
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.257-264
    • /
    • 2001
  • We developed a SIFG (Slice-based Information Graph), which modelled the information flow on program on the basis of the information flow of data tokens on data slices. Then we defied a SCM (Slice-based complexity measure), which measured the program complexity by measuring the complexity of information flow on SIFG. SCM satisfied the necessary properties for complexity measure proposed by Briand et al. SCM could measure not only the control and data flow on program but also the physical size of program unlike the existing measures.

  • PDF

A Study on the Development of Experiential STEAM Program Based on Visual Impairment Using 3D Printer: Focusing on 'Sun' Concept (3D프린터 활용 체험형 STEAM 프로그램 개발 연구: '태양' 개념을 중심으로)

  • Kim, Sanggul;Kim, Hyoungbum;Kim, Yonggi
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • In this study, experiential STEAM program using 3D printer was produced focusing on the content elements of 'solar' in the 2015 revised science curriculum, and in order to find out the effectiveness of the STEAM program, analyzed creative problem solving, STEAM attitude, and STEAM satisfaction by applying it to two middle school 77 students simple random sampled. The results of this study are as follows. First, a solar tactile model was produced using a 3D printer, and a program was developed to enable students to actively learn experience-oriented activities through visual impairment experiences. Second, in the response sample t-test by the difference in pre- and post-score of STEAM attitude tests, significant statistical test results were shown in 'interest', 'consideration', 'self-concept', 'self-efficacy', and 'science and engineering career choice' sub-factors except 'consideration' and 'usefulness / value recognition' sub-factors (p<.05). Third,, the STEAM satisfaction test conducted after the application of the 3D printer-based STEAM program showed that the average value range of sub-factors were 3.66~3.97, which improved students' understanding and interest in science subjects through the 3D printer-based STEAM program.