• Title/Summary/Keyword: 3D 맵

Search Result 306, Processing Time 0.026 seconds

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Development of High Dynamic Range Panorama Environment Map Production System Using General-Purpose Digital Cameras (범용 디지털 카메라를 이용한 HDR 파노라마 환경 맵 제작 시스템 개발)

  • Park, Eun-Hea;Hwang, Gyu-Hyun;Park, Sang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • High dynamic range (HDR) images represent a far wider numerical range of exposures than common digital images. Thus it can accurately store intensity levels of light found in the specific scenes generated by light sources in the real world. Although a kind of professional HDR cameras which support fast accurate capturing has been developed, high costs prevent from employing those in general working environments. The common method to produce a HDR image with lower cost is to take a set of photos of the target scene with a range of exposures by general purpose cameras, and then to transform them into a HDR image by commercial softwares. However, the method needs complicate and accurate camera calibration processes. Furthermore, creating HDR environment maps which are used to produce high quality imaging contents includes delicate time-consuming manual processes. In this paper, we present an automatic HDR panorama environment map generating system which was constructed to make the complicated jobs of taking pictures easier. And we show that our system can be effectively applicable to photo-realistic compositing tasks which combine 3D graphic models with a 2D background scene using image-based lighting techniques.

An Integrated VR Platform for 3D and Image based Models: A Step toward Interactivity with Photo Realism (상호작용 및 사실감을 위한 3D/IBR 기반의 통합 VR환경)

  • Yoon, Jayoung;Kim, Gerard Jounghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2000
  • Traditionally, three dimension model s have been used for building virtual worlds, and a data structure called the "scene graph" is often employed to organize these 3D objects in the virtual space. On the other hand, image-based rendering has recently been suggested as a probable alternative VR platform for its photo-realism, however, due to limited interactivity. it has only been used for simple navigation systems. To combine the merits of these two approaches to object/scene representations, this paper proposes for a scene graph structure in which both 3D models and various image-based scenes/objects can be defined. traversed, and rendered together. In fact, as suggested by Shade et al. [1]. these different representations can be used as different LOD's for a given object. For in stance, an object might be rendered using a 3D model at close range, a billboard at an intermediate range. and as part of an environment map at far range. The ultimate objective of this mixed platform is to breath more interactivity into the image based rendered VE's by employing 3D models as well. There are several technical challenges in devising such a platform : designing scene graph nodes for various types of image based techniques, establishing criteria for LOD/representation selection. handling their transition s. implementing appropriate interaction schemes. and correctly rendering the overall scene. Currently, we have extended the scene graph structure of the Sense8's WorldToolKit. to accommodate new node types for environment maps. billboards, moving textures and sprites, "Tour-into-the-Picture" structure, and view interpolated objects. As for choosing the right LOD level, the usual viewing distance and image space criteria are used, however, the switching between the image and 3D model occurs at a distance from the user where the user starts to perceive the object's internal depth. Also. during interaction, regardless of the viewing distance. a 3D representation would be used, if it exists. Finally. we carried out experiments to verify the theoretical derivation of the switching rule and obtained positive results.

  • PDF

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.

A Study on Map Building of Mobile Robot Using RFID Technology and Ultrasonic Sensor (초음파센서와 RFID 시스템을 이용한 이동로봇의 맵 빌딩에 관한 연구)

  • Lee, Do-Kyoung;Im, Jae-Sung;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • This paper is to present map building of mobile robot using RFID (Radio Frequency Identification) technology and ultrasonic sensor. For mobile robot to perform map building, the mobile robot needs its localization and accurate driving in space. In this reason, firstly, kinematic modeling of mobile robot under non-holonomic constrains is introduced. Secondly, based on this modeling, a tracking controller is designed for tracking a given path based on backstepping method using Lyapunov function. The Lyapunov function is also introduced for proving the stability of the designed tracking controller. Thirdly, 2D map building is performed by RFID system, mobile robot system and ultrasonic sensors. The RFID mobile robot system is composed of DC motor, encoder, ultra sonic sensor, digital compass, RFID receiver and RFID antenna. Finally, the path tracking simulation results and map building experimental results are presented to show the effectiveness of the designed controller.

Generation of 3D Terrain Mesh Using Noise Function and Height Map (노이즈 함수 및 높이맵을 이용한 3차원 지형 메쉬의 생성)

  • Sangkun, Park
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • This paper describes an algorithm for generating a terrain using a noise function and a height map as one of the procedural terrain generation methods. The polygon mesh data structure to represent the generated terrain concisely and render it is also described. The Perlin noise function is used as the noise technique for terrain mesh, and the height data of the terrain is generated by combining the four noise waves. In addition, the terrain height information can be also obtained from actual image data taken from the satellite. The algorithm presented in this paper generates the geometry part of the polygon topography from the height data obtained, and generated a material for texture mapping with two textures, that is, a diffuse texture and a normal texture. The validity of the terrain method proposed in this paper is verified through application examples, and its possibility can be confirmed through performance verification.

An Efficient Real-Time Image Reconstruction Scheme using Network m Multiple View and Multiple Cluster Environments (다시점 및 다중클러스터 환경에서 네트워크를 이용한 효율적인 실시간 영상 합성 기법)

  • You, Kang-Soo;Lim, Eun-Cheon;Sim, Chun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2251-2259
    • /
    • 2009
  • We propose an algorithm and system which generates 3D stereo image by composition of 2D image from 4 multiple clusters which 1 cluster was composed of 4 multiple cameras based on network. Proposed Schemes have a network-based client-server architecture for load balancing of system caused to process a large amounts of data with real-time as well as multiple cluster environments. In addition, we make use of JPEG compression and RAM disk method for better performance. Our scheme first converts input images from 4 channel, 16 cameras to binary image. And then we generate 3D stereo images after applying edge detection algorithm such as Sobel algorithm and Prewiit algorithm used to get disparities from images of 16 multiple cameras. With respect of performance results, the proposed scheme takes about 0.05 sec. to transfer image from client to server as well as 0.84 to generate 3D stereo images after composing 2D images from 16 multiple cameras. We finally confirm that our scheme is efficient to generate 3D stereo images in multiple view and multiple clusters environments with real-time.

A Study on the Improving the Rendering Performance of the 3D Road Model for the Vehicle Simulator (차량 시뮬레이터를 위한 3차원 도로모델의 렌더링 성능 향상에 관한 연구)

  • Choi, Young-Il;Jang, Suk;Kim, Kyu-Hee;Cho, Ki-Yong;Kwon, Seong-Jin;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.162-170
    • /
    • 2004
  • In these days, a vehicle simulator is developed by using a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with a natural interaction, a sufficient immersion and realistic images. To achieve this, it is important to provide a fast and uniform rendering performance regardless of the complexity of virtual worlds or the level of simulation. In this paper, modeling methods which offer an improved rendering performance for complex VR applications as 3D road model have been implemented and verified. The key idea of the methods is to reduce a load of VR system by means of LOD(Level of Detail), alpha blending texture mapping, texture mip-mapping and bilboard. Hence, in 3D road model where a simulation is complex or a scene is very large, the methods can provide uniform and acceptable frame rates. The VR system which is constructed with the methods has been experimented under the various application environments. It is confirmed that the proposed methods are effective and adequate to the VR system which associates with a vehicle simulator.

Application Analysis of Digital Photogrammetry and Optical Scanning Technique for Cultural Heritages Restoration (문화재 원형복원을 위한 수치사진측량과 광학스캐닝기법의 응용분석)

  • Han, Seung Hee;Bae, Yeon Soung;Bae, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.869-876
    • /
    • 2006
  • In the case of earthenware cultural heritages that are found in the form of fragments, the major task is quick and precise restoration. The existing method, which follows the rule of trial and error, is not only greatly time consuming but also lacked precision. If this job could be done by three dimensional scanning, matching up pieces could be done with remarkable efficiency. In this study, the original earthenware was modeled through three-dimensional pattern scanning and photogrammetry, and each of the fragments were scanned and modeled. In order to obtain images from the photogrammetry, we calibrated and used a Canon EOS 1DS real size camera. We analyzed the relationship among the sections of the formed model, efficiently compounded them, and analyzed the errors through residual and color error map. Also, we built a web-based three-dimensional simulation environment centering around the users, for the virtual museum.

Depthmap Generation with Registration of LIDAR and Color Images with Different Field-of-View (다른 화각을 가진 라이다와 칼라 영상 정보의 정합 및 깊이맵 생성)

  • Choi, Jaehoon;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.28-34
    • /
    • 2020
  • This paper proposes an approach to the fusion of two heterogeneous sensors with two different fields-of-view (FOV): LIDAR and an RGB camera. Registration between data captured by LIDAR and an RGB camera provided the fusion results. Registration was completed once a depthmap corresponding to a 2-dimensional RGB image was generated. For this fusion, RPLIDAR-A3 (manufactured by Slamtec) and a general digital camera were used to acquire depth and image data, respectively. LIDAR sensor provided distance information between the sensor and objects in a scene nearby the sensor, and an RGB camera provided a 2-dimensional image with color information. Fusion of 2D image and depth information enabled us to achieve better performance with applications of object detection and tracking. For instance, automatic driver assistance systems, robotics or other systems that require visual information processing might find the work in this paper useful. Since the LIDAR only provides depth value, processing and generation of a depthmap that corresponds to an RGB image is recommended. To validate the proposed approach, experimental results are provided.