• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.042 seconds

Diagnosis of Coxofemoral Joint Luxation in a Whooper Swan (Cygnus Cygnus) Using Computed Tomography and Radiography

  • Jinho Jang;Jong-pil Seo;Hyohoon Jeong;Seyoung Lee;YoungMin Yun
    • Journal of Veterinary Clinics
    • /
    • v.41 no.2
    • /
    • pp.139-142
    • /
    • 2024
  • A wild Whooper swan (Cygnus Cygnus) with limping due to an injured left pelvic limb in an accident was rescued on the seashore and transferred to the Jeju Wildlife Rescue Center on November 23rd, 2020. On physical examination, its body condition score was 1 out of 5 due to starvation and dehydration. The left coxofemoral joint was also examined by careful palpating and estimating the damage. Moderated soft tissue swelling and crepitus surrounding the hip joint were confirmed. Radiography and computed tomography (CT) were used together for an accurate diagnosis of the joint. By radiographs readings, it was difficult to accurately confirm the condition of the proximal femur due to superimposition of the synsacrum and internal organs. However, signs such as avulsion fracture of the femoral head and a few fragments around the joint were revealed by CT imaging. Besides, through three-dimensional (3D) image analysis of CT, the dislocated area and condition of the left hip joint could be accurately and easily confirmed. The diagnostic process showing in this paper could be used as a good reference for diagnosing coxofemoral joint luxation in wild swan.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Wind-induced vibration of a cantilever arch rib supported by a flexible cable system

  • Hang Zhang;Zilong Gao;Haojun, Tang;Yongle Li
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • The wind-resistant performance of bridges is generally evaluated based on the strip assumption. For the arch rib of arch bridges, the situation is different due to the curve axis and the variable cross-sectional size. In the construction stage, the arch rib supported by a cable system exhibits flexible dynamic characteristics, and the wind-resistant performance attracts specially attention. To evaluate the wind-induced vibration of an arch rib with the maximum cantilever state, the finite element model was established to compute the structural dynamic characteristics. Then, a three-dimensional (3D) fluid-solid coupling analysis method was realized. After verifying the reliability of the method based on a square column, the wind-induced vibration of the arch rib was computed. The vortex-induced vibration (VIV) performance of the arch rib was focused and the flow field characteristics were discussed to explain the VIV phenomenon. The results show that the arch rib with the maximum cantilever state had the possibility of VIV at high wind speeds but the galloping was not observed. The lock-in wind speeds were larger than the results based on the strip assumption. Due to the vibration of arch rib, the frequency of shedding vortices along the arch axis trended to be uniform.

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

A Study on Prediction of Inundation Area considering Road Network in Urban Area (도시지역 도로 네트워크를 활용한 침수지역 예측에 관한 연구)

  • Son, Ah Long;Kim, Byunghyun;Han, Kun Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.307-318
    • /
    • 2015
  • In this study, the efficiency of two-dimensional inundation analysis using road network was demonstrated in order to reduce the simulation time of numerical model in urban area. For this objective, three simulation conditions were set up: Case 1 considered only inundation within road zone, while Case 2 and 3 considered inundation within road and building zone together. Accordingly, Case 1 used grids generated based on road network, while Case 2 and 3 used uniform and non-uniform grids for whole study area, respectively. Three simulation conditions were applied to Samsung drainage where flood damage occurred due to storm event on Sep. 21, 2010. The efficiency of suggested method in this study was verified by comparison the accuracy and simulation time of Case 1 and those of Case 2 and 3. The results presented that the simulation time was fast in the order of Case 1, 2 and 3, and the fit of inundation area between each case was more than 85% within road zone. Additionally, inundation area of building zone estimated from inundation rating index gave a similar agreement under each case. As a result, it is helpful for study on real-time inundation forecast warning to use a proposed method based on road network and inundation rating index for building zone.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

A STUDY ON THE SIZE AND VOLUME OF THE PALATE (구개의 크기 및 용적에 관한 연구)

  • Baik, Byeong-Ju;Kim, Mi-Ra;Kim, Jae-Gon;Yang, Yun-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.397-406
    • /
    • 2002
  • The purpose of this study was to clarify the palatal arch length, width and volume in the primary and permanent dentition. Samples were consisted of normal occlusion in the primary dentition(50 males and 50 females) and permanent dentition(43 males and 43 females). Their upper plaster casts were used and through 3-dimensional laser scanning(3D Scanner, DS4060, LDI, U.S.A.), cloud data, polygonization, section curve, loft surface and fit and horizontal plane were made for measuring the palatal arch length, width and volume(Surfacer 10.0, Imageware, U.S.A.). Correlation coefficients were calculated separately for males and females in each group(SPSS 10.0). The results were as follows : 1. Average distance from the fit plane to the points(tooth-tooth-palate) was greater in the permanent dentition than those of primary dentition. 2. Palatal volume was greater more than 3 times in the permanent dentition, especially it was greater in male compared to female with significance(p<0.05). 3. Palatal width of male was greater in the primary and permanent dentition but palatal length, only in the permanent dentition than that of female(P<0.05). 4. Correlation coefficients were statistically most significant between the palatal volume and size of posterior palatal width and total palatal length(r=0.401, r=0.450, r=0.678, r=0.654).

  • PDF

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Development of Acoustic Positioning System for ROV using SBL System (SBL방식을 이용한 무인잠수정의 수중초음파 위치측정시스템 개발)

  • Yu, Son-Cheol;Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.808-814
    • /
    • 2010
  • In this paper we executed a SBL(Short Baseline) underwater acoustic positioning system that is a kind of underwater position estimation system to estimates the 3-dimensional position of ROV(Remotely Operated Vehicle) using hydrophones and DAQ(Data Acquisition) system in the basin which dimensions are $3{\times}3{\times}1.7(m)$. For this experiment, we let 4 hydrophones in different positions of the basin for receiver and 1 hydrophone is fixed on the underwater vehicle for transmitting sensor(pinger). These five hydrophones are communicated with each other to find the 3-D positions of the moving ROV in the basin. The measured signals are collected by DAQ system and the positions of the ROV are plotted by LabView program in real-time. To estimate the position of the ROV we used a trigonometric method. In X and Y plane the estimated data has a small errors but in Z plane the estimated data has large errors so we cannot use this data for position control. One solution of this problem is using depth sensor that implemented of the underwater vehicle. Hereafter, we will test in the ocean using designed SBL system.