• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.036 seconds

Comparison of 3D accuracy of three different digital intraoral scanners in full-arch implant impressions

  • Ozcan Akkal;Ismail Hakki Korkmaz;Funda Bayindir
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to evaluate the performance of digital intraoral scanners in a completely edentulous patient with angled and parallel implants. MATERIALS AND METHODS. A total of 6 implants were placed at angulations of 0°, 5°, 0°, 0°, 15°, and 0° in regions #36, #34, #32, #42, #44, and #46, respectively, in a completely edentulous mandibular polyurethane model. Then, the study model created by connecting a scan body on the implants was scanned using a model scanner, and a 3D reference model was obtained. Three different intraoral scanners were used for digital impressions (PS group, TR group, and CS group, n = 10 in each group). The distances and angles between the scan bodies in these measurement groups were measured. RESULTS. While the Primescan (PS) impression group had the highest accuracy with 38 ㎛, the values of 104 ㎛ and 171 ㎛ were obtained with Trios 4 IOSs (TR) and Carestream 3600 (CS), respectively (P = .001). The CS scanner constituted the impression group with the highest deviation in terms of accuracy. In terms of dimensional differences in the angle parameter, a statistically significant difference was revealed among the mean deviation angle values according to the scanners (P < .001). While the lowest angular deviation was obtained with the PS impression group with 0.185°, the values of 0.499° and 1.250° were obtained with TR and CS, respectively. No statistically significant difference was detected among the impression groups in terms of precision values (P > .05). CONCLUSION. A statistically significant difference was found among the three digital impression groups upon comparing the impression accuracy. Implant angulation affected the impression accuracy of the digital impression groups. The most accurate impressions in terms of both distance and angle deviation were obtained with the PS impression group.

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh;Fourn, Hocine;Nebab, Mokhtar;Atmane, Redhwane Ait;Mellal, Fatma;Atmane, Hassen Ait;Benadouda, Mourad;Touns, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.169-183
    • /
    • 2022
  • In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures

  • A. Yeganeh-Salman;M. Lezgy-Nazargah
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.485-500
    • /
    • 2023
  • The non-linear static analysis of reinforced concrete (RC) structures using the three-dimensional (3D) finite element method is a time-consuming and challenging task. Moreover, this type of analysis encounters numerical problems such as the lack of convergence of results in the stages of growth and propagation of cracks in the structure. The time integration analysis along with the mass scaling (MS) technique is usually used to overcome these limitations. Despite the use of this method in the 3D finite element analysis of RC structures, a comprehensive study has not been conducted so far to assess the effects of the MS method on the accuracy of results. This study aims to evaluate the accuracy of the MS method in the non-linear quasi-static finite element analysis of RC structures. To this aim, different types of RC structures were simulated using the finite element approach based on the implicit time integration method and the mass scaling technique. The influences of effective parameters of the MS method (i.e., the allowable values of increase in the mass of the RC structure, the relationship between the duration of the applied load and fundamental vibration period of the RC structure, and the pattern of applied loads) on the accuracy of the simulated results were investigated. The accuracy of numerical simulation results has been evaluated through comparison with existing experimental data. The results of this study show that the achievement of accurate structural responses in the implicit time integration analyses using the MS method involves the appropriate selection of the effective parameters of the MS method.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Effect of stress relief heat treatment on the residual stress and hardness of additively manufactured Ti-6Al-4V alloy (응력제거 열처리 공정조건이 적층제조한 Ti-6Al-4V 합금의 잔류응력 및 경도에 미치는 영향)

  • Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.282-287
    • /
    • 2023
  • The effect of stress relief heat treatment temperature and duration time on the microstructure, residual stress and Vickers hardness of additively manufactured Ti-6Al-4V alloy using laser powder bed fusion process was clarified. As a result of stress relief heat treatment for 240 minutes at 823 K and 60 minutes or more at 873 K, residual stress was decreased less than 30 MPa without grain growth and phase transformation which causes dimensional distortion and deterioration of mechanical properties. In addition, hardness was increased with increasing heat treatment temperature and duration time. It was deduced that the refinement of acicular martensitic α' phase due to the increasing duration time of isothermal heat treatment at 773~873 K, which was not detected by XRD and phase map analysis using SEM-EBSD, probably increases the hardness.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Investigations of countermeasures used to mitigate tunnel deformations due to adjacent basement excavation in soft clays

  • Jinhuo Zheng;Minglong Shen;Shifang Tu;Zhibo Chen;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.563-573
    • /
    • 2024
  • In this study, various countermeasures used to mitigate tunnel deformations due to nearby multi-propped basement excavation in soft clay are explored by three-dimensional numerical analyses. Field measurements are used to calibrate the numerical model and model parameters. Since concrete slabs can constrain soil and retaining wall movements, tunnel movements reach the maximum value when soils are excavated to the formation level of basement. Deformation shapes of an existing tunnel due to adjacent basement excavation are greatly affected by relative position between tunnel and basement. When the tunnel is located above or far below the formation level of basement, it elongates downward-toward or upward-toward the basement, respectively. It is found that tunnel movements concentrate in a triangular zone with a width of 2 He (i.e., final excavation depth) and a depth of 1 D (i.e., tunnel diameter) above or 1 D below the formation level of basement. By increasing retaining wall thickness from 0.4 m to 0.9 m, tunnel movements decrease by up to 56.7%. Moreover, tunnel movements are reduced by up to 80.7% and 61.3%, respectively, when the entire depth and width of soil within basement are reinforced. Installation of isolation wall can greatly reduce tunnel movements due to adjacent basement excavation, especially for tunnel with a shallow burial depth. The effectiveness of isolation wall to reduce tunnel movement is negligible unless the wall reaches the level of tunnel invert.

DEPOSITION CHARACTERISTICS OF HIGH-THERMAL-CONDUCTIVITY STEEL IN THE DIRECT ENERGY DEPOSITION PROCESS AND ITS HARDNESS PROPERTIES AT HIGH TEMPERATURES

  • JONG-YOUN SON;GWANG-YONG SHIN;KI-YONG LEE;HI-SEAK YOON;DO-SIK SHIM
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1365-1369
    • /
    • 2020
  • Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sections of the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25℃, 300℃, and 600℃ revealed that it had a higher hardness than the conventional annealed SKD61.