• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.045 seconds

Fabrication of Cores for the Injection Mould with a High Cooling Rate and Injection Molding Using the Fabricated Core (고속 냉각 특성을 가진 사출성형 금형 코어 제작 및 사출 성형)

  • Ahn, D.G,
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.549-554
    • /
    • 2007
  • The objective of this paper is to investigate into the fabrication technology of cores for the injection mould with three-dimensional conformal cooling channels to reduce the cooling time. The location of the conformal cooling channels has been determined through the injection molding analysis. The mould has been manufactured from a hybrid rapid tooling technology, which is combined a direct metal rapid tooling with a machining process. Several injection molding experiments have been performed to examine the productivity and the validity of the designed mould. From the results of the experiments, it has been shown that the proposed mould can mold a final product within a cooling time of 3 seconds and a cycle time of 21 seconds, respectively.

Development of Structural Analysis Modeling for KALIMER Fuel Rod

  • Kang, Hee-Young;Cheol Nam;Woan Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.175-180
    • /
    • 1998
  • The U-Zr metallic alloy with low swelling HT9 cladding is the candidate for the KALIMER fuel rod. The fuel rod should be able to maintain the structural integrity during its lifetime in the reactor. In a typical metallic fuel rod, load is mainly applied by internal gas pressure, and the deformation is primarily caused by creep of the cladding. The three-dimensional FEM modelling of a fuel rod is important to predict the structural behavior in concept design stage. Using the ANSYS code, the 3-D structure analyses were performed for various configuration, element and loads. It has been shown that the present analysis model properly evaluate the structural integrity of fuel rod. The present analysis results show that the fuel rod is expected to maintain its structural integrity during normal operation.

  • PDF

The Effect of Frequency and Intensity of /a/ Phonation on the Result of Acoustic Analysis (발성시 음도 및 강도의 변화가 음성분석검사 결과에 미치는 영향)

  • 손영익;윤영선;권중근;추광철
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 1997
  • Measuring phonatory stability using MDVP(Multi-dimensional voice program, Kay Elemetrics Corp., NJ, USA) are becoming popular in many Korean clinics and laboratories, yet questions about standardization and reference values have remained. The purpose of present study was to examine the effects of frequency and intensity variation on the results of acoustic analysis related to phonatory stability. Twenty young adults(ten females and ten males) were asked to sustain vowel /a/ for more than 3 seconds under 9 different pitch and loudness conditions. Using MDVP, nine voice samples were analyzed, and jitter percent, fundamental frequency variation, shimmer percent, peak amplitude variation, noise to harmonic ratio, amplitude tremor intensity index, and degree of subharmonics were compared. The results showed that intensity changes can significantly affect various phonatory stability measures, and the lowest perturbation values can be obtained from slightly louder(10dB) phonatory condition than comfortable level phonation.

  • PDF

Structure Optimization of Double-Sided Iron-Core Type Permanent Magnet Linear Synchronous Machine Using Response Surface Method (반응표면법을 이용한 양측 철심형 영구자석 선형 동기기의 구조 최적화)

  • Lee, Sang-Geon;Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1210-1211
    • /
    • 2011
  • The inherent drawback of iron-core type permanent magnet linear synchronous motor (PMLSM) is detent force that is dependent on several major factors such as PM length, slot clearance, and skewing. To minimize the detent force, this paper proposes a structure optimization using the combination computation of two dimensional (2-D) finite element analysis (FEA) and response surface methodology (RSM). The RSM, that is a collection of the statistical and mathematical techniques, is utilized to predict the global optimal solution based on the FEA calculated results of the detect forces for different combinations of factors. With the help of the combination computation the high capacity iron-core type PMLSM with more than 12000 N propulsion forces only contains less than 3 N detent forces.

  • PDF

Development of the cutting simulation system with decomposition Algorithm. (분해 모델링 기법을 이용한 절삭 시뮬레이션 시스템 개발)

  • 김용현;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.422-425
    • /
    • 2004
  • This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..

  • PDF

The Development of adaptive optical dimension measuring system (적응형 광학 치수 측정 장치 개발)

  • 윤경환;강영준;백성훈;강신재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.690-695
    • /
    • 2004
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3-D data of an object was calculated from the 2dimensional image information obtained by the laser stripe using the laser triangulation. The system can measure the diameter of hole not only in a normal plane but also in an incline plane. We can experiment with magnification that is optimized according to size of object using zoom lens. In this paper, the theoretical formula and calibration of the system were described. The measuring precision of the system was investigated by experiment.

  • PDF

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • Nam Jin Won;Song Ha Won;Byun Keun Joo;Bang Choon Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

High-Precision Surface Servo Methodology (고정밀 서피스 서보 방법론)

  • Jung, Kwangsuk;Park, Junkyu;Shim, Kibon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • High-precision surface actuator, in which in-plane motion is realized by not two-dimensional actuator superposing linear actuators but integrated planar actuator, has been developed to cope with the severe target performance like precise motion with large envelope. It is very difficult to accomplish the performance with the traditional actuating principle. So, various methods have been tried to break through the problem. This paper discusses some meaningful trials performed in the Nano Measurement and Precision Motion Control Lab. of Korea National University of Transportation.

  • PDF

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants I: 2D frontal model experiment (대기오염물질의 연직 수송에 미치는 전선의 역할 I: 2차원 전선모델을 이용한 수송 실험)

  • Nam, Jae-Cheol;Thorpe, Alan
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.29-40
    • /
    • 2004
  • It is well known that convections and fronts are the most effective weather systems for the vertical transport of pollutants. I used a two dimensional front model in order to investigate the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. The main dynamic processes which contribute the vertical transport of pollutants are advection and diffusion. The transported amount of pollutant from the boundary layer to the free atmosphere increases dramatically during the developing stage of the front. 46% of pollutants are transported vertically within 12 hour and 54% are transported within 24 hour. In the meantime, compared to the total amount of pollutants transported by both advection and diffusion, about 25% (30%) less pollutants are transported when only advection (diffusion) process in included in the model. The most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.