• 제목/요약/키워드: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.171 seconds

f-MRI with Three-Dimensional Visual Stimulation (삼차원 시각 자극을 이용한 f-MRI 연구)

  • Kim C.Y.;Park H.J.;Oh S.J.;Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Purpose : Instead of conventional two-dimensional (2-D) visual stimuli, three-dimensional (3-D) visual stimuli with stereoscopic vision were employed for the study of functional Magnetic Resonance Imaging (f-MRI). In this paper f-MRI with 3-D visual stimuli is investigated in comparison with f-MRI with 2-D visual stimuli. Materials and Methods : The anaglyph which generates stereoscopic vision by viewing color coded images with red-blue glasses is used for 3-D visual stimuli. Two-dimensional visual stimuli are also used for comparison. For healthy volunteers, f-MRI experiments were performed with 2-D and 3-D visual stimuli at 3.0 Tesla MRI system. Results : Occipital lobes were activated by the 3-D visual stimuli similarly as in the f-MRI with the conventional 2-D visual stimuli. The activated regions by the 3-D visual stimuli were, however, larger than those by the 2-D visual stimuli by $18\%$. Conclusion : Stereoscopic vision is the basis of the three-dimensional human perception. In this paper 3-D visual stimuli were applied using the anaglyph. Functional MRI was performed with 2-D and 3-D visual stimuli at 3.0 Tesla whole body MRI system. The occipital lobes activated by the 3-D visual stimuli appeared larger than those by the 2-D visual stimuli by about $18\%$. This is due to the more complex character of the 3-D human vision compared to 2-D vision. The f-MRI with 3-D visual stimuli may be useful in various fields using 3-D human vision such as virtual reality, 3-D display, and 3-D multimedia contents.

  • PDF

Three-Dimensional Digital Subtraction Angiographic Evaluation of Aneurysm Remnants after Clip Placement

  • Ahn, Soon-Seob;Kim, Young-Don
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Objective : The aneurysm remnants rate was evaluated via three-dimensional digital subtraction angiography (3D-DSA) in the postoperative evaluation of clipped aneurysms. Methods : Data on surgically clipped aneurysms of anterior circulation obtained via postoperative 3D-DSA from February 2007 to March 2009 were gathered. The results of the postoperative 3D-DSA and of two-dimensional digital subtraction angiography (2D-DSA) for the detection of aneurysm remnants were compared, and an investigation was performed as to why 2D-DSA had missed some aneurysm remnants that were detected in the 3D-DSA. Various surgical factors that revealed aneurysm remnants in the 3D-DSA were also evaluated. Results : A total of 39 neck remnants of 202 clipped aneurysms (19.3%) were confirmed in 3D-DSA, and these were classified according to Sindou's classification of aneurysm remnants. Patients with only a neck remnant found in the 3D-DSA represented 17.3% (35/202 aneurysms) of the whole series, and those with a residuum of neck plus sac found in the 3D-DSA represented 1.9% (4/202 aneurysms). The causes of aneurysm remnants were no full visualization (14/39, 35.9%), parent and perforator artery protection (10/39, 25.6%), clip design problems (8/39, 20.5%), and broadnecked aneurysm (7/39, 17.9%). Conclusion : Patients with ${\leq}2$mm aneurysm remnants showed an increased risk of undetectable aneurysm remnants in the 2D-DSA. The most frequent location of the missed aneurysm in 2D-DSA was the anterior communicating artery. 3D-DSA showed more aneurysm remnants than what is indicated in the existing literature, the 2D-DSA.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

3D Visualization for Extremely Dark Scenes Using Merging Reconstruction and Maximum Likelihood Estimation

  • Lee, Jaehoon;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, we propose a new three-dimensional (3D) photon-counting integral imaging reconstruction method using a merging reconstruction process and maximum likelihood estimation (MLE). The conventional 3D photon-counting reconstruction method extracts photons from elemental images using a Poisson random process and estimates the scene using statistical methods such as MLE. However, it can reduce the photon levels because of an average overlapping calculation. Thus, it may not visualize 3D objects in severely low light environments. In addition, it may not generate high-quality reconstructed 3D images when the number of elemental images is insufficient. To solve these problems, we propose a new 3D photon-counting merging reconstruction method using MLE. It can visualize 3D objects without photon-level loss through a proposed overlapping calculation during the reconstruction process. We confirmed the image quality of our proposed method by performing optical experiments.

3-Dimensional Shape Measurement System for BGA Balls Using PMP Method (PMP 방식을 이용한 BGA 볼의 3차원 형상측정 시스템)

  • Kim, Hyo Jun;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • As modern electronic devices get smaller and smaller, high-resolution, large Field-Of-View (FOV), fast, and cost-effective 3-dimensional (3-D) measurement is requested more and more. In particular, defect inspection machines using machine-vision technology nowadays require 3-D inspection as well as the conventional 2-D inspection. Phase Measuring Profilometry (PMP) is one of the fast non-contact 3-D shape measuring methods currently being extensively investigated in the electronic component manufacturing industry. The PMP system is well known and is successfully applied to measuring complex surface profiles with varying reflectance properties. However, for highly reflective surfaces, such as Ball Grid Arrays (BGAs), it has difficulty accurately measuring 3-D shapes. In this paper, we propose a new fast optical system that can eliminate the highly reflective saturated regions in BGA ball images. This is achieved by utilizing four Low Intensity Grating (LIG) images together with the conventional High Intensity Grating (HIG) images. Extensive experiments using BGA samples show a repeatability of under ${\pm}20um$ in standard deviation, which is suitable for most 3-D shape measurements of BGAs.

Location-aware visualization of VRML models in indoor location tracking system

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2007
  • For many applications particularly in navigation system, a three-dimensional representation improves the usability of information. This paper introduces 3D Graphical User Interface (GUI) of indoor location tracking system, 3D Navigation View. The application provides users a 3D visualization of the indoor environments they are exploring, synchronized with the physical world through spatial information obtained from indoor location tracking system. It adopts widely used Virtual Reality Modeling Language (VRML) to construct, represent, distribute and render 3D world of indoor environments over Internet. Java, an all-purpose programming language is integrated to comprehend spatial information received from indoor location tracking system. Both are connected through an interface called External Authoring Interface (EAI) provided by VRML. Via EAI, Java is given the authority to access and manipulate the 3D objects inside the 3D world that facilitates the indication of user's position and viewpoint in the constructed virtual indoor environments periodically.

Integral Imaging and Digital Holography Techniques for Three-dimensional Sensing, Imaging and Display (Invited Paper) (3차원 입체영상 센싱, 이미징 및 디스플레이를 위한 집적영상 및 디지털 홀로그래피 기술)

  • Kim, Seung-Cheol;Shin, Dong-Hak;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.169-192
    • /
    • 2014
  • In this paper, state-of-the-art digital holography and integral imaging have been introduced as practical three-dimensional imaging and display technology. Operational principles and recent research and development activities of these technologies have been discussed, as well as a vision of their future.

A Study on 3 Dimensional Modeling of Keum-man Connection Canal using GIS and considering Hydraulic Analysis (GIS와 수리학적 해석을 고려한 금만연결수로의 3차원 모델링에 관한 연구)

  • Kim, Dae-Sik;Nam, Sang-Woon;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.3-15
    • /
    • 2008
  • This study aims to simulate the 3 dimensional (3D) model of Keum-man connection canal using geographic information system (GIS) as well as considering design in viewpoint of engineering. The canal connects from Keumkang to Mangyungkang in order to supply fresh water into Saemankeum lake. This study used 3 dimensional spatial planning model (3DSPLAM) process to generate the 3D model, which has not only several planning layers in actual process, but also their corresponding layers in modeling process to simulate 3D space of rural villages. The discharge of the canal is $20m^3/s$ on slope of 1/28,400 in the canal length of 14.2km, which consists of pipe line and open channel. This study surveyed the route of the canal and its surrounding environment for facilities to make images in the 3D graphic model. Besides, the present study developed data set in GIS for geogrphical surface modeling as well as parameters in hydraulic analysis for water surface profile on the canal using HEC-RAS model. From the data set constructed, this study performed analysis of water surface profile with HEC-RAS, generation of digital elevation model (DEM) and 3D objects, design of the canal section and route on DEM in AutoCAD, and 3D canal model and its surrounding 3D space in 3DMAX with virtual reality. The study result showed that the process making 3D canal model tried in this study is very useful to generate computer graphic model with the designed canal on the surface of DEM. The generated 3D canal can be used to assist decision support for the canal policy.

Three Dimensional Printing Technique and Its Application to Bone Tumor Surgery (3차원 프린팅 기술과 이를 활용한 골종양 수술)

  • Kang, Hyun Guy;Park, Jong Woong;Park, Dae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.466-477
    • /
    • 2018
  • Orthopaedics is an area where 3-dimensional (3D) printing technology is most likely to be utilized because it has been used to treat a range of diseases of the whole body. For arthritis, spinal diseases, trauma, deformities, and tumors, 3D printing can be used in the form of anatomical models, surgical guides, metal implants, bio-ceramic body reconstruction, and orthosis. In particular, in orthopaedic oncology, patients have a wide variety of tumor locations, but limited options for the limb salvage surgery have resulted in many complications. Currently, 3D printing personalized implants can be fabricated easily in a short time, and it is anticipated that all bone tumors in various surgical sites will be reconstructed properly. An improvement of 3D printing technology in the healthcare field requires close cooperation with many professionals in the design, printing, and validation processes. The government, which has determined that it can promote the development of 3D printing-related industries in other fields by leading the use of 3D printing in the medical field, is also actively supporting with an emphasis on promotion rather than regulation. In this review, the experience of using 3D printing technology for bone tumor surgery was shared, expecting orthopaedic surgeons to lead 3D printing in the medical field.

Abstract of digital motion capture system and 3D game character animation application (디지털 모션캡쳐(Digital Motion Capture)시스템의 개요 및 3D게임 캐릭터 애니메이션 적용)

  • Choi, Tae-Jun;Lee, Dong-Lyeor;Sohn, Jong-Nam;kim, Tae-Yul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.257-263
    • /
    • 2006
  • Nowadays, 3-D(Three-dimensions) is used in various field such as Games, Movies, Animations etc. Especially the Role of 3-D computer graphic is being generalized by turnover of Screen from '2-dimensional' to '3-dimensional'. There are not enough data about 'Motion Capture' even though it plays main function in 3-dimensional movement. 'Motion Capture' could be also unfamiliar for people. And as a matter of fact, the use of this equipment is limited due to its high cost. Therefore, I studied the outline of Digital Motion Capture system and its application to 3-D game Character Animation. And I checked the movement of 3-D Character after transplanting the Motion Data to the 3-D Character. I acquired Motion Data by Optical Motion Capture Equipment which we possess and transplanted it into the 3-D Character then Implemented it as walking, running and hitting which are the basic motions of Expression.

  • PDF