• Title/Summary/Keyword: 3D형상 측정

Search Result 373, Processing Time 0.029 seconds

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

A STUDY FOR OCCLUSAL FEATURES OF FIRST PERMANENT MOLAR AND SECOND PRIMARY MOLAR (제 1대구치와 제 2유구치의 교합면 양상에 관한 연구)

  • Jeon, So-Hee;Kim, Jae-Gon;Yang, Yeon-Mi;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.89-100
    • /
    • 2005
  • The purpose of this study was to analyze the morphometrics of primary second molar and permanent first molar. Samples were consisted of normal occlusion in the primary dentition(50 males and 50 females) and permanent dentition(43 males and 43 females). Their upper and lower plaster casts were used and their measuring points were decided, through 3-dimensional laser scanning(3D Scanner, DS4060, LDI, U.S.A.), fitting standard horizontal plane were made for measuring the intercuspal distance, volume of intercuspal area and section curve. The results were as follows; 1. Average distance from the fit plane to the cusp tips of mandibular primary second molar was smaller than any other tooth. (0.05-0.09 mm in male and 0.04-0.09 mm in female). 2. Intercuspal distances of mandibular primary second molar and permanent first molar were larger in male than in female. Especially, there was statistical significance in primary second molar(p<0.05). 3. Intercuspal distance between distobuccal and distolingual cusp was larger in maxillary primary second molar, except cross intercuspal distances. And distances between distal and distolingual cusp, in mandibular primary second molar, between mesiolingual and mesiobuccal cusp, in maxillary first molar, and between distolingual and mesiolingual cusp, in mandibular first molar were larger than any other intercuspal distance. 4. Volume of intercuspal area of primary second molar and permanent first molar was larger in mandible than in maxilla and that of permanent first molar was 1.40-1.75 times of primary second molar (p<0.05). Also it was larger in male than in female, but there was no statistical significance. 5. In most cases, section curves were wider and deeper in permanent dentition than in primary dentition. Except cross intercuspal distances, in maxilla, section curve between mesiobuccal and mesiolingual cusp was the deepest in both dentition. In mandible, section curve between distobuccal and distal cusp was the deepest in permanent dentition and between distolingual and distal cusp was the deepest in primary dentition.

  • PDF

A Morphologic Study of head and face for Sasang Constitution (사상체질별(四象體質別) 두면부(頭面部)의 형태학적(形態學的) 특징(特徵))

  • Ko, Byung-Hee;Song, Il-Byung;Cho, Yong-Jin;Choi, Chang-Seok;Kim, Jong-Weon;Hong, Suck-CHull;Lee, Eui-Ju;Lee, Sang-Yong;Seo, Jeong-Sug
    • Journal of Sasang Constitutional Medicine
    • /
    • v.8 no.1
    • /
    • pp.101-186
    • /
    • 1996
  • The clinical application of constitutional Diagnosis is the most important part of Sasang constitutional medicine. It has been studied in various way. However, the study of morphologic characteristics on the face is applied for the first time. For quantitative analysis of the correlation between the sasang constitution and the shape of the face, the head-facial part of 170 cases were measured by Martin's measurement and analysis of a) the measurement value of height and the component ratio from the Gnathion to each part of face by constitution. b) the measurement value of depth and the component ratio from T-projected to each part of the face by constitution. c) the measurement value of breadth and component ratio between each parts of the facial breadth by constitution. d) the ratio of square on every part of face by constitution. e) the characteristics on each part of the face by constitution. f) the contour line of the forehead. g) the result of discriminant analysis about the constitution. Authors obtained the results from the study as follows; 1. The characteristics of Taeum-IN (1) The measurement value of Height, Breadth, T-Projected had a tendency to maximum value in general. (2) The value of lower opthal height and the square of lower opthal part was maximum. (3) The value of Pronasal T-projected length and Subnasal T-projected length was minimum, so Taeum-In has characteristics of depression in middle face, nasal part. (4) In the ratio of Breadth, T-Projected, T-Projected was minimum. (5) It was maximum that the square of nose, Alare, Middle face, Lower face and it was minimum that the square of eye. The square of nose, Alare, Middle facc, Lower face was maximum and the square of eye was minimum. (6) The curvature of the eyebrow was minimum. (7) The projection of jaw (Pogonion T-projection length) was maximum. (8) The breadth of eye was minimum. (9) There was a tendency that the projection of the forehead to the right in general. 2. The characteristics of Soeum-In (1) In all cases of projected length the measurement value was minimum. (2) The value of lower opthal height and the square of lower opthal part was minimum. (3) By the Pupulare T-projected length, the value of Pronasal T-projected length and Subnasal T-projected length was minimum, so the Soeum In's face shape is flat. (4) The square of eye, mouth, forehead was maximum and the square of nose, Alare, Middle face, Lower face was minimum. (5) The curvature of the eyebrow was maximum. (6) The projection of mouth was minimum. (7) The jaw was flat. (8) The breadth of eye was maximum. (9) There was a tendency that the projection of the forehead to the left in general. 3. The characteristics of Soyang-In. (1) In most cases of 고경 length the measurement value was minimum. (2) By the Pupulare T-projected length, each ratio of projected length was maximum, so the Soyang-In's face shape has many protrusions (3) In the ratio of Breadth, T-Projected, T-Projected was maximum. (4) The square of mouth was minimum. (5) The inclination of the forehead was minimum. (6) The projection of mouth was maximum. (7) The breadth of eye was minimum. (8) There was a tendency that the projection of the forehead to the left in general. (9) The middle face was protruded. 4. Discriminant about the constitution. According to the result of discriminant, the accuracy probability of discriminant was 85.58% in total and Taeum-In was 90.5%, Soeum-In was 70.8%, Soyang-In was 89.5%. The accuracy probability of discriminant about 3 constitutional group increased by 49.03% than the accident probility 36.55% 5. Suggestion (1) The study which gather and analysis the data should be continued. (2) The study which subdivide the characteristics of each part of the face by the constitution should be continued. (3) The analysis method about Moire should be supplement. (4) The study about the morphologic characteristics of the whole body should be continued. (5) Computer program of constitution diagnosis should be developed. (6) To increase utility of this method, the measurement should be automation.

  • PDF