• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.035 seconds

3D Augmented Reality Streaming System Based on a Lamina Display

  • Baek, Hogil;Park, Jinwoo;Kim, Youngrok;Park, Sungwoong;Choi, Hee-Jin;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • We propose a three-dimensional (3D) streaming system based on a lamina display that can convey field information in real-time by creating floating 3D images that can satisfy the accommodation cue. The proposed system is mainly composed of three parts, namely: a 3D vision camera unit to obtain and provide RGB and depth data in real-time, a 3D image engine unit to realize the 3D volume with a fast response time by using the RGB and depth data, and an optical floating unit to bring the implemented 3D image out of the system and consequently increase the sense of presence. Furthermore, we devise the streaming method required for implementing augmented reality (AR) images by using a multilayered image, and the proposed method for implementing AR 3D video in real-time non-face-to-face communication has been experimentally verified.

3D Finite Element Analysis on Load Carrying Capacity of Geosynthetic-reinforced Bridge Abutment (보강토 교대 구조물의 하중지지 특성에 관한 3차원 유한요소해석)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.15-26
    • /
    • 2010
  • This paper presents the results of a three-dimensional finite element analysis on a geosynthetic-reinforced bridge abutment. Examples on the use of mechanically stabilized earth bridge abutment in north America are first presented. A three-dimensional finite element analysis on a 4.8 m high, 14 m wide geosynthetic-reinforced bridge abutment was performed to investigate the 3D behavior of the geosynthetic-reinforced bridge abutment and the load carrying capacity of the bridge abutment in the three-dimensional space. The results are then presented in a way that the three-dimensional behavior of the abutment can be identified in terms of wall displacements and reinforcement forces. It is shown that the wall facing displacements as well as the reinforcement forces in the abutment are smaller than those computed based on a plane strain approximation.

An Positioning Error Analysis of 3D Face Recognition Apparatus (3차원 안면자동인식기의 Positioning 오차분석)

  • Kwak, Chang-Kyu;Cho, Yong-Beum;Sohn, Eun-Hae;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2006
  • 1. Objectives We are going to develope 3D Face Recognition Apparatus to analyse the facial characteristics of the Sasangin. In the process, we should identify the recognition rate of the three dimensional position using this Apparatus. 2. Methods We took a photograph of calibrator($280{\times}400mm$) with interval of 20mm longitudinal direction of 10 times using 3D Face Recognition Apparatus. In the practice, we obtained 967 point to the exclusion of points deviating from the visual field of dual camera. And we made a comparison between measurement values and three dimensional standard values to calculate the errors. 3. Results and Conclusions In this test, the average error rate of X axis values was 0.019% and the maximum error rate of X axis values was 0.033%, the average error rate of Y axis values was 0.025% and the maximum error rate of Y axis values was 0.044%, the average error rate of Z axis values was 0.158% and the maximum error rate of Z axis values was 0.269%. This results exhibit much improvement upon the average error rate 1% and the maximum error rate 2.242% of the existing 3D Recognition Apparatus. In conclusion, we assessed that this apparatus was adaptable to abstract the facial characteristic point from three dimensional face shape in the mechanical aspects.

  • PDF

A Study on the Factor of Safety for Rock Slopes Based on Three Dimensional Effects (3차원 효과를 고려한 암반사면의 안전율 변화에 관한 연구)

  • Seo, Og-Geon;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2015
  • In the slope stability analysis and design, Limit Equilibrium Method (LEM) and Shear Strength Reduction technique (SSR) are mainly used. Both methods are able to perform two and three dimensional analysis. SSR is considered to be more sensitive and more reasonable than LEM by many researchers. However, in practice LEM is still widely used because of the increase of analysis time and complexity of the model in SSR. In this study, three dimensional analysis of the protruding rock slope is performed by SSR in order to study the effects of protruding length using rock slope FLAC 3D. In this study, as results of analysis variations of the safety factor have been studied according to slope angle, slope height, the soil strength, protruding slope length projected variables. The results show that the factor of safety as more affected by the shapes of the protruding rock slope than the rock strength.

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

Two-Dimensional Photonic Crystal Lasers (2차원 광자결정 레이저)

  • Lee, Y. H.;J. K. Hwang;H. Y. Ryu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.96-98
    • /
    • 2000
  • Room-temperature continuous operation of two-dimensional photonic crystal lasers is achieved at 1.6 ${\mu}{\textrm}{m}$ by using InGaAsP slab-waveguide triangular photonic crystal on top of wet-oxidized aluminum oxide. The main difficulty in the realization of photonic bandgap (OBG) structures has been the nontrivial difficulties in nanofabrication, especially for 3-dimensional PBG structures. Recently, 2-D PBG structures have attracted a great deal of attention due to their simplicity in fabrication and theoretical study as compared to the three-dimensional counterparts [1]. Recently, air-gulfed 2-D slab PBG lasers were reported by Caltech group [2]. However, this air-slab structure is mechanically fragile and thermally unforgiving. Therefore, a new structure that can remove this thermal limitation is dearly sought after for 2-D PBG laser to have practical meaning. In this talk, we report room-temperature continuous operation of 2-D photonic bandgap lasers that are thermally and mechanically stable.

  • PDF

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

Simulator Development for Evaluating Compensation Performance. of Active Power Filter using Three-Dimensional Space Current Co-ordinate (3차원(次元) 전류좌표(電流座標)에 의한 능동전력(能動電力)필터의 보상성능(補償性能) 평가(評價)를 위한 시뮬레이터 개발(開發))

  • Lim, Young-Choel;Jung, Young-Gook;Na, Suk-Hwan;Choi, Chan-Hak;Chang, Young-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.337-341
    • /
    • 1994
  • This paper describes an effort to develop a simulator of Active Power Filter (APF) by three dimentional(3-D) space current co-ordinate. System current is represented by 3-D vector composed of three current components - active, reactive and distorted. %THD (%Total Harmonics Distortion) can be converted to height-angle of system current vector and power factor can be defined on 3-D space current co-ordinate without loss of generality. Current of APF and power system can be analyzed by 3-D visualization of current vector trajectory. So, the computer simulation results show that the proposed method by 3-D space current co-ordinate make up for disadvantages of performance evaluation on time / frequency domain.

  • PDF

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.102-113
    • /
    • 2019
  • Objective: To assess the accuracy and potential bias of computed tomography (CT) ventricular volumetry using semiautomatic three-dimensional (3D) threshold-based segmentation in repaired tetralogy of Fallot, and to compare them to those of two-dimensional (2D) magnetic resonance imaging (MRI). Materials and Methods: This retrospective study evaluated 32 patients with repaired tetralogy of Fallot who had undergone both cardiac CT and MRI within 3 years. For ventricular volumetry, semiautomatic 3D threshold-based segmentation was used in CT, while a manual simplified contouring 2D method was used in MRI. The indexed ventricular volumes were compared between CT and MRI. The indexed ventricular stroke volumes were compared with the indexed arterial stroke volumes measured using phase-contrast MRI. The mean differences and degrees of agreement in the indexed ventricular and stroke volumes were evaluated using Bland-Altman analysis. Results: The indexed end-systolic (ES) volumes showed no significant difference between CT and MRI (p > 0.05), while the indexed end-diastolic (ED) volumes were significantly larger on CT than on MRI (93.6 ± 17.5 mL/m2 vs. 87.3 ± 15.5 mL/m2 for the left ventricle [p < 0.001] and 177.2 ± 39.5 mL/m2 vs. 161.7 ± 33.1 mL/m2 for the right ventricle [p < 0.001], respectively). The mean differences between CT and MRI were smaller for the indexed ES volumes (2.0-2.5 mL/m2) than for the indexed ED volumes (6.3-15.5 mL/m2). CT overestimated the stroke volumes by 14-16%. With phase-contrast MRI as a reference, CT (7.2-14.3 mL/m2) showed greater mean differences in the indexed stroke volumes than did MRI (0.8-3.3 mL/m2; p < 0.005). Conclusion: Compared to 2D MRI, CT ventricular volumetry using semiautomatic 3D threshold-based segmentation provides comparable ES volumes, but overestimates the ED and stroke volumes in patients with repaired tetralogy of Fallot.