• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.037 seconds

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

A Study on Developing Customized Bolus using 3D Printers (3D 프린터를 이용한 Customized Bolus 제작에 관한 연구)

  • Jung, Sang Min;Yang, Jin Ho;Lee, Seung Hyun;Kim, Jin Uk;Yeom, Du Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose : 3D Printers are used to create three-dimensional models based on blueprints. Based on this characteristic, it is feasible to develop a bolus that can minimize the air gap between skin and bolus in radiotherapy. This study aims to compare and analyze air gap and target dose at the branded 1 cm bolus with the developed customized bolus using 3D printers. Materials and Methods : RANDO phantom with a protruded tumor was used to procure images using CT simulator. CT DICOM file was transferred into the STL file, equivalent to 3D printers. Using this, customized bolus molding box (maintaining the 1 cm width) was created by processing 3D printers, and paraffin was melted to develop the customized bolus. The air gap of customized bolus and the branded 1 cm bolus was checked, and the differences in air gap was used to compare $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$ and $V_{95%}$ in treatment plan through Eclipse. Results : Customized bolus production period took about 3 days. The total volume of air gap was average $3.9cm^3$ at the customized bolus. And it was average $29.6cm^3$ at the branded 1 cm bolus. The customized bolus developed by the 3D printer was more useful in minimizing the air gap than the branded 1 cm bolus. In the 6 MV photon, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 102.8%, 88.1%, 99.1%, 95.0%, 94.4% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 101.4%, 92.0%, 98.2%, 95.2%, 95.7%, respectively. In the proton, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 104.1%, 84.0%, 101.2%, 95.1%, 99.8% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 104.8%, 87.9%, 101.5%, 94.9%, 99.9%, respectively. Thus, in treatment plan, there was no significant difference between the customized bolus and 1 cm bolus. However, the normal tissue nearby the GTV showed relatively lower radiation dose. Conclusion : The customized bolus developed by 3D printers was effective in minimizing the air gap, especially when it is used against the treatment area with irregular surface. However, the air gap between branded bolus and skin was not enough to cause a change in target dose. On the other hand, in the chest wall could confirm that dose decrease for small the air gap. Customized bolus production period took about 3 days and the development cost was quite expensive. Therefore, the commercialization of customized bolus developed by 3D printers requires low-cost 3D printer materials, adequate for the use of bolus.

  • PDF

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Construction of Hydrogeological Model for KURT Site Based on Geological Model (KURT 연구지역에서 지질모델을 이용한 수리지질모델의 구축)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • The KURT (KAERI Underground Research Tunnel) is a research tunnel which is located in KAERI (Korea Atomic Energy Research Institute) site. At KURT, researches on engineering and natural barrier system, which are the most important components for geological disposal system for high level radioactive waste, have been conducted. In this study, we synthesized the site characteristics obtained by various types of site investigation to introduce the geological model for KURT site, and induced the 3-D hydrogeological model for KURT site from the geological model. From the geological investigation at the surface and boreholes, four geological elements such as subsurface weathered zone, upper fractured rock, lower fractured rock and fracture zones were determined for the geological model. In addition, the geometries of these geological elements were also analyzed for the geological model to be three-dimensional. The results from 3-D geological model were used to construct the hydro-geological model for KURT site, which is one of the input data for groundwater flow modeling and safety assessment.

Development of Optimal Modeling System for Analyzing Mountain Micrometeorology (산림 미기상 해석을 위한 최적모델 개발)

  • Lee, SukJun;choi, YongHan;Jung, JeaHee;Won, MyoungSoo;Lim, Gyu-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The extreme weather conditions become frequent and severe with global warming. To prevent and cope forest disaster like a forest fire, we need an accurate micrometeorological prediction system for mountainous regions. This study addressed the forest fires occurred at Bonghwa and Gangneung in March, 2013. We constructed and optimized the prediction system that were required to interpret and simulate the forest micrometeorology. At first, we examined WRF physical sensitivity. Subsequently, KMA AWS observation data were assimilated using three-dimensional variation data assimilation method. The effectiveness of the assimilation was examined by using AWS observations enhanced with the Forest Research Institute observations. Finally, The 100 meters spatial resolution wind data were obtained by using the MUKLIMO for the given wind vector from WRF.

Convergence change in a tunnel face approaching fault zones (파쇄대에 접근하는 터널의 내공변위 변화 해석)

  • Lee, In-Mo;Lee, Seung-Ju;Lee, Joo-Gong;Lee, Dae-Hyuck
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.235-245
    • /
    • 2002
  • The purpose of this study is to figure out the tendency of tunnel convergence during excavation and to present a methodology for the prediction of a fault zone ahead of a tunnel face by analyzing three dimensional displacements in various ways. 3-D numerical analysis was performed to investigate changes of tunnel convergence vectors near a fault zone and to propose a flow chart for predicting fault zones. Results of the site investigation and results of trend line analysis of in-situ data were compared to verify the usefulness of a trend line analysis. It is concluded that the orientation of faults can be predicted by using stereonets and the direction of initial stresses can be predicted from the arm length of a displacement vector as a tunnel approaches fault zones. The results of the trend line analysis coincided with those of the site investigation, and a methodology for the prediction of a fault zone was proposed.

  • PDF

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure

  • Kwak, Jeonggeun;Park, Jongkeun;Park, Jeonghyun;Baek, Kijong;Choi, Ansik;Kim, Taekyung
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.

Three-dimensional Chemical Shift Imaging with PRESS Excitation and Spiral Readouts (점구분 분광술 여기 방식과 나선형 판독경사를 이용한 삼차원 화학적 변위 영상법의 개발)

  • Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose : We developed a 3D CSI (chemical shift imaging) sequence that uses the PRESS (point resolved spectroscopy) excitation scheme and spiral-based readout gradients. Materials and Methods : We implemented constant-density spirals ($32{\times}32$ matrix, $24{\times}24\;cm$ FOV) which use analytic equations to enable real-time prescription on the scanner. In-vivo data from the brain were collected and reconstructed using the gridding algorithm. Results : Data illustrate that with our imaging sequence, the benefits of the PRESS technique, which include elimination of lipid artifacts, remain intact while flexible scan time versus resolution tradeoffs can be achieved using the constant-density spirals. Volumetric high resolution 3D CSI covering 5760 cm3 could be obtained in 12.5 minutes. Conclusion : Spiral-based readout gradients offer a flexible tradeoff between scan time versus resolution. By combining this feature with PRESS based excitation, efficient methods of volumetric spectroscopic imaging can be accomplished by obtaining whole brain coverage while eliminating lipid contamination.

  • PDF

Three-dimensional Analysis of the Spine using Formetric 4D according to Upper Limb Movement and Resistance Application (상지의 움직임과 저항 적용에 따른 Formetric 4D를 이용한 척추의 3차원적 분석)

  • Kim, Hyun-Jin;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • PURPOSE: The aim of this study was to measure changes in spine inclination and thoracolumbar structure and morphology according to upper-extremity movements with and without resistance in order to evaluate the spine stability in workers. METHODS: Forty-eight middle-aged male workers (mean age, 40.48 ± 6.27 years) participated in this study. Using the spine analysis system, changes in the inclination of the spine and structure as well as shape of the thoracolumbar spine were measured. For posture measurement, the postures of standing, lifting the right and left arms (shoulder joint 90° flexion), and lifting with both arms were measured in random order. In addition, variables were measured using a resistance of 3 kg for each posture. The statistical significance level was set at α = .05 for all variables. RESULTS: There were statistically significant differences between the front and back inclinations of the spine, kyphotic curve of the thoracic spine, lordotic curve of the lumbar spine, rotation changes in the thoracolumbar spine, and rotation changes in the T4 vertebra (p < .05). However, there was no significant difference in the left and right tilts of the spine. In the post-hoc analysis, rotation changes in the T4 vertebra showed a significant difference in posture when resistance was applied to the left and right sides CONCLUSION: Causes of musculoskeletal diseases include excessive thoracic spine rotation, torsion, and hyperlordosis of the lumbar spine. Therefore, it is necessary to improve the working environment in order to ensure a healthy posture and prevent musculoskeletal diseases that can reduce the ability to carry various and/or excessive loads.