References
- X. Miao, D. Yum, Z. L. Brand, and H. Dahlkamp, "Method and system for using light emission by a depth-sensing camera to capture video images under low-light conditions," U.S. Patent 10,009,554 (2018).
- R. K. Price, M. Bleyer, and D. Demandolx, "Multi-spectrum illumination-and-sensor module for head tracking, gesture recognition and spatial mapping," U.S. Patent Appl. 15/447064 (2018).
- OSRAM Marketing IR APAC, Wide IR Illumination & Sensing Products from OSRAM (Consumer Applications_Illumination & Sensing, April 2016), http://www.ledtaiwan. org/zh/sites/ledtaiwan.org/files/data16/images/%281%29IR%2BUV-S1-%20General%20Info%20Pack_Apr%272016.pdf (2018).
- Lumentum Marketing IR, Diode Lasers in Next-Generation 3D Sensing Applications: Meeting the Challenges of Reliability and Scale (MARKETS_3D Sensing_ WHITE PAPER, 2018), https://resource.lumentum.com/s3fs-public/technical-library-items/diodelaser3d-wp-cl-ae.pdf (2018).
- C. T. Hung and T. C. Lu, "830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics," IEEE J. Quantum Electron. 49, 127-132 (2013). https://doi.org/10.1109/JQE.2012.2231053
- Y. Yamagata, Y. Yamada, M. Muto, S. Sato, R. Nogawa, A. Sakamoto, and M. Yamaguchi, "915 nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)," Proc. SPIE 9348, 93480F (2015).
- A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, "High-power 808 nm lasers with a super-large optical cavity," Semicond. Sci. Technol. 20, 621 (2005). https://doi.org/10.1088/0268-1242/20/6/024
- A. Malag and B. Mroziewicz, "Vertical beam divergence of double-barrier multiquantum well (DBMQW) (AlGa)As heterostructure lasers," J. Lightwave Technol. 14, 1514-1518 (1996). https://doi.org/10.1109/50.511681
- G. Lin, S.-T. Yen, C.-P. Lee, and D.-C. Liu, "Extremely small vertical far-field angle of InGaAs-AlGaAs quantumwell lasers with specially designed cladding structure," IEEE Photon. Technol. Lett. 8, 1588-1590 (1996). https://doi.org/10.1109/68.544686
- T. Chan, S. H. Son, K. C. Kim, and T. G. Kim, "Design and simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH quantum dot laser diode," J. Opt. Soc. Korea 15, 124-127 (2011). https://doi.org/10.3807/JOSK.2011.15.2.124
- S. P. Abbasi and M. H. Mahdieh, "Asymmetric, nonbroadened waveguide structures for double QW high-power 808 nm diode laser," Proc. SPIE 10254, 1025406 (2017).
- D. Heo, I. K. Han, J. I. Lee, and J. Jeong, "Study on InGaAsP-InGaAs MQW-LD with symmetric and asymmetric separate confinement heterostructure," IEEE Photon. Technol. Lett. 16, 1801-1803 (2004). https://doi.org/10.1109/LPT.2004.829772
- K. H. Schlereth and M. Tacke, "The complex propagation constant of multilayer waveguides: an algorithm for a personal computer," IEEE J. Quantum Electron. 26, 627-630 (1990). https://doi.org/10.1109/3.53377
-
I. K. Han, S. H. Cho, P. J. S. Heim, D. H. Woo, S. H. Kim, J. H. Song, F. G. Johnson, and M. Dagenais, "Dependence of the light-current characteristics of 1.55-
${\mu}m$ broad-area lasers on different p-doping profiles," IEEE Photon. Technol. Lett. 12, 251-253 (2000). https://doi.org/10.1109/68.826904