• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.035 seconds

Nondestructive Analysis of Textile Dyed with Traditional Blue and Green (전통 청색 및 녹색 염료로 염색한 직물의 비파괴 분석)

  • Yun, Eunyoung;Kwon, Hyeyoung
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.81-89
    • /
    • 2013
  • This study concerns UV-Vis spectrophotometry and 3D-fluorescence spectrophotometry analysis of textile parts of blue and green tones dyed with indigo of blue tone and turmeric, gardenia, goldthread and amur cork tree of yellow tone. In order to verify whether the kinds of textiles affected analysis result of each dye, silk and cotton textile samples were produced. According to the analysis of the degree of reflection of UV-Vis spectrophotometry, unique reflection spectrum of indigo appeared regardless of the kinds of textiles when they were dyed with indigo. As for textiles of green tone, the 3D-fluorescence spectroscopic analysis result showed that unique spectrums of yellow dyes, turmeric, goldthread and amur cork tree appeared regardless of the kinds of textiles but the fluorescence spectrums of gardenia and indigo did not appear.

Evaluation of validity of three dimensional dental digital model made from blue LED dental scanner (Blue LED 방식의 스캐너로 제작된 치과용 3차원 디지털 모형의 정확도 평가)

  • Kim, Jae-Hong;Jung, Jae-Kwan;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3007-3013
    • /
    • 2014
  • The objectives of this study was to evaluate the validity of 3D digital models made from blue LED dental scanner. Twenty same cases of stone models and 3d digital models were manufactured for this study. Intercanine distance, intermolar distance, two dental arch lengths(right, left) and two diagonal of dental arch lengths(right, left) were measured for evaluation of validity. The nonparametric Wilcoxon rank sum test was used for statistical analysis (${\alpha}$=0.05). Although stone models showed larger than digital models in all measured distances(p<0.05), none exceeded the clinically acceptable range.

3D Modeling of Islands using Structured Procedural Method (구조화된 절차적 방법을 이용한 섬 3차원 모델링)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.879-888
    • /
    • 2021
  • With the development of information and communication technology, the demand for indirect experience contents using realistic media is increasing. It is important to keep the overall concept of the models consistently in order to immerse in the contents while watching realistic media. In the case of realistic media that provides an indirect experience of tourist attractions, modeling should be done by reflecting the actual information of the sites in order to provide an accurate experience. In this paper, we propose a three-dimensional modeling method of islands, representative tourism resources of the southern coast, by reflecting actual data. Since the proposed method is performed according to a structured procedure, it makes it easy to maintain the visual consistency of the entire model when several people work together. Implementation results show that the proposed method produces more realistic results than the modeling method using height information simply.

Robust Estimation of Hand Poses Based on Learning (학습을 이용한 손 자세의 강인한 추정)

  • Kim, Sul-Ho;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1528-1534
    • /
    • 2019
  • Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

Does the palatal vault form have an influence on the scan time and accuracy of intraoral scans of completely edentulous arches? An in-vitro study

  • Osman, Reham;Alharbi, Nawal
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.294-304
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate the influence of different palatal vault configurations on the accuracy and scan speed of intraoral scans (IO) of completely edentulous arches. MATERIALS AND METHODS. Three different virtual models of a completely edentulous maxillary arch with different palatal vault heights- Cl I moderate (U-shaped), Cl II deep (steep) and Cl III shallow (flat)-were digitally designed using CAD software (Meshmixer; Autodesk, USA) and 3D-printed using SLA-based 3D-printer (XFAB; DWS, Italy) (n = 30; 10 specimens per group). Each model was scanned using intraoral scanner (Trios 3; 3ShapeTM, Denmark). Scanning time was recorded for all samples. Scanning accuracy (trueness and precision) were evaluated using digital subtraction technique using Geomagic Control X v2020 (Geomagic; 3DSystems, USA). One-way analysis of variance (ANOVA) test was used to detect differences in scanning time, trueness and precision among the test groups. Statistical significance was set at α = .05. RESULTS. The scan process could not be completed for Class II group and manufacturer's recommended technique had to be modified. ANOVA revealed no statistically significant difference in trueness and precision values among the test groups (P=.959 and P=.658, respectively). Deep palatal vault (Cl II) showed significantly longer scan time compared to Cl I and III. CONCLUSION. The selection of scan protocol in complex cases such as deep palatal vault is of utmost importance. The modified, adopted longer path scan protocol of deep vault cases resulted in increased scan time when compared to the other two groups.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

An Analysis of Inquiry Activities in Chemistry II Textbook by Using 3-Dimensional Analysis Framework (3차원 분석틀을 이용한 화학II 교과서의 탐구활동 분석)

  • Seok Hee Lee;Yong Keun Kim;Seong Bae Moon
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.391-400
    • /
    • 2003
  • This study was performed the analysis of seven kinds of the hight school chemistry II textbooks based on the 6th curriculum. Particularly, inquiry activity part was analyzed by the three dimension framework which consists of inquiry content dimension, inquiry process dimension and inquiry context dimension. In the analysis of the inquiry content dimension of inquiry activities, the total number of themes in seven kinds of textbook was 212. And the number of inquiry activities in seven kinds of textbook was diverse: A textbook had 28, B textbook 25, C textbook 31, D textbook 35, E textbook 31, F textbook 29 and G textbook 33. As for the avaerage number of inquiry activities of each chapter, chapter I "Material Science" is 3.00(9.91${\%}$), chapter II "Atomic Structure and Periodic Table" 4.57(15.1${\%}$), chapter III "Chemical Bonding and Compound" 6.86(22.6${\%}$), chapter IV "State of Matter and Solution" 7.00(23.1${\%}$), chapter V "Chemical Reaction" 8.86(29.2${\%}$). For the analysis of inquiry process dimension, it follows in the order of 'observation and measuring (66.7${\%}$)', 'Interpreting data and formulating generalizations (26.5${\%}$)', 'seeing a problem and seeking ways to solve it (4.1%)', and 'building, testing and revising the theoretical model (2.7${\%}$)'. As for the analysis of the inquiry context dimension, the scientific context occupied 90.5${\%}$, the individual context 4.3${\%}$, the social context 0.9${\%}$, and the technical context 4.3${\%}$. It shows that the proportion of STS(Science-Technology-Society) related contents in inquiry activities was only 9.5${\%}$.

EFFECT OF NUMBER OF IMPLANTS AND CANTILEVER DESIGN ON STRESS DISTRIBUTION IN THREE-UNIT FIXED PARTIAL DENTURES: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

  • Park, Ji-Hyun;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.290-297
    • /
    • 2008
  • STATEMENT OF PROBLEM: Implant-supported fixed cantilever prostheses are influenced by various biomechanical factors. The information that shows the effect of implant number and position of cantilever on stress in the supporting bone is limited. PURPOSE: The purpose of this study was to investigate the effect of implant number variation and the effect of 2 different cantilever types on stress distribution in the supporting bone, using 3-dimensional finite element analysis. MATERIAL AND METHODS: A 3-D FE model of a mandibular section of bone with a missing second premolar, first molar, and second molar was developed. $4.1{\times}10$ mm screw-type dental implant was selected. 4.0 mm height solid abutments were fixed over all implant fixtures. Type III gold alloy was selected for implant-supported fixed prostheses. For mesial cantilever test, model 1-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 1-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 1-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with mesial cantilever were simulated. And then, 155N oblique force was applied to the buccal cusp of second premolar. For distal cantilever test, model 2-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 2-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 2-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with distal cantilever were simulated. And then, 206N oblique force was applied to the buccal cusp of second premolar. The implant and superstructure were simulated in finite element software(Pro/Engineer wildfire 2.0). The stress values were observed with the maximum von Mises stresses. RESULTS: Among the models without a cantilever, model 1-1 and 2-1 which had three implants, showed lower stress than model 1-2 and 2-2 which had two implants. Although model 2-1 was applied with 206N, it showed lower stress than model 1-2 which was applied with 155N. In models that implant positions of models were same, the amount of applied occlusal load largely influenced the maximum von Mises stress. Model 1-1, 1-2 and 1-3, which were loaded with 155N, showed less stress than corresponding model 2-1, 2-2 and 2- 3 which were loaded with 206N. For the same number of implants, the existence of a cantilever induced the obvious increase of maximum stress. Model 1-3 and 2-3 which had a cantilever, showed much higher stress than the others which had no cantilever. In all models, the von Mises stresses were concentrated at the cortical bone around the cervical region of the implants. Meanwhile, in model 1-1, 1-2 and 1-3, which were loaded on second premolar position, the first premolar participated in stress distribution. First premolars of model 2-1, 2-2 and 2-3 did not participate in stress distribution. CONCLUSION: 1. The more implants supported, the less stress was induced, regardless of applied occlusal loads. 2. The maximum von Mises stress in the bone of the implant-supported three unit fixed dental prosthesis with a mesial cantilever was 1.38 times that with a central pontic. The maximum von Mises stress in the bone of the implant-supported three-unit fixed dental prosthesis with a distal cantilever was 1.59 times that with a central pontic. 3. A distal cantilever induced larger stress in the bone than a mesial cantilever. 4. A adjacent tooth which contacts implant-supported fixed prosthesis participated in the stress distribution.

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

Using a Body Scanner in Assessing Perceptions of Attractiveness: Cross-Regional Study

  • Aghekyan, Marine;Kim, Dong-Eun;Lichty, Margaret
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.6
    • /
    • pp.799-808
    • /
    • 2013
  • Previous research reported that body size measured as Body Mass Index (BMI) and body shape measured as waist-hip-ratio (WHR) are two essential factors that form the perceptions of body attractiveness. However, the debate on the importance of BMI versus WHR is ongoing. In addition, scholarly articles, that focus on the role of geographic and cultural variability on perceptions of attractiveness, report inconsistent results. Some suggested that according to globalization and the rise of mass media, geographic variability of perceptions of attractiveness have been altered, while others believed that it remains. This study cross-regionally investigates the role of body size and body shape on the perceptions of female attractiveness. Samples were composed of 107 female college students in Alabama and 107 female college students in California. Participants viewed 27 three-dimensional body scan images of women in three body shapes (pear, hourglass, and rectangle) and three body sizes (underweight, normal weight, and overweight) and rated their perceptions of attractiveness. Images were shown to students in a random order with an overhead projector and Microsoft Office PowerPoint software. A three-way mixed-ANOVA was conducted to analyze the data. The results of the study showed that some regional differences exist between the two sample groups. However, regardless of the regional difference, hourglass shapes were perceived to be the most attractive shape and underweight sizes were perceived to be the most attractive size for both samples.