• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.038 seconds

Development of Structural Analysis Modeling for KALIMER Fuel Rod

  • Kang, Hee-Young;Cheol Nam;Woan Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.175-180
    • /
    • 1998
  • The U-Zr metallic alloy with low swelling HT9 cladding is the candidate for the KALIMER fuel rod. The fuel rod should be able to maintain the structural integrity during its lifetime in the reactor. In a typical metallic fuel rod, load is mainly applied by internal gas pressure, and the deformation is primarily caused by creep of the cladding. The three-dimensional FEM modelling of a fuel rod is important to predict the structural behavior in concept design stage. Using the ANSYS code, the 3-D structure analyses were performed for various configuration, element and loads. It has been shown that the present analysis model properly evaluate the structural integrity of fuel rod. The present analysis results show that the fuel rod is expected to maintain its structural integrity during normal operation.

  • PDF

Development of the cutting simulation system with decomposition Algorithm. (분해 모델링 기법을 이용한 절삭 시뮬레이션 시스템 개발)

  • 김용현;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.422-425
    • /
    • 2004
  • This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..

  • PDF

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • Nam Jin Won;Song Ha Won;Byun Keun Joo;Bang Choon Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

Frequency Response Based Multi-Objective Design Toolbox for PID Controller (PID 제어기의 주파수응답 기반 다목적 설계도구)

  • Jin, Lihua;Lim, Yeon-Soo;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1869-1875
    • /
    • 2008
  • Recently, a direct data-driven synthesis of a proportional integral derivative(PID) controller for a linear time-invariant(LTI) plant was presented in [1]. The authors showed that a complete set of PID controllers achieving robust performance and stability can be calculated directly from frequency response(FR) data without an identified transfer function model. However, it is not convenient to use this method because it requires complicated numerical algorithms to find specific frequencies which are solutions of an identical equation. The method also requires determination of the boundary of the controller's parameters from a finite set of FR data. In this paper, we present the development of a user-friendly Matlab toolbox based on the method in [1]. This toolbox allows us to obtain a complete three-dimensional(3-D) graphical solution of PID controllers that meet multiple design objectives. Several examples are given to demonstrate the use of the toolbox.

Thermal Analysis of Automotive Disc Brake Using FFT-FEM (FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 전신 주요 관절의 카오스 지수 분석)

  • Park, Jung-Hong;Son, Kwon;Seo, Kuk-Woong;Park, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.792-795
    • /
    • 2007
  • To quantify irregular body motions the time series analysis was applied to the gait study. The motions obtained from gait experiment are complex to exhibit nonlinear behaviors. The purpose of this study is to measure quantitatively the characteristics of the major six joints of the body during walking. The gait experiments were carried out for eighteen young males walking on a motor driven treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The largest Lyapunov exponent was calculated from the time series to quantify stabilities of each joint. The results provides a data set of nonlinear dynamic characteristics for six joints engaged in normal walking.

  • PDF

Lower Bound Net-Section Limit Loads for Circumferential Part-Through Surface Cracked Pipes under Combined Pressure and Bending (내압과 굽힘의 복합하중을 받는 원주방향 표면균열 배관에 대한 하한계 실단면 한계하중)

  • Oh, Chang-Kyun;Kim, Jong-Sung;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1772-1777
    • /
    • 2007
  • This paper provides plastic limit loads of pipes with constant-depth, circumferential part-through surface cracks under combined pressure and bending. A key issue is to postulate discontinuous hoop stress distributions in the net-section. Validity of the proposed limit load solutions is checked against the results from three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly plastic material behavior.

  • PDF

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

Plastic loads of pipe bends under combined pressure and out-of-plane bending (면외 굽힘하중과 내압의 복합하중을 받는 곡관의 소성하중)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1836-1841
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice-Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed.

  • PDF

Numerical Analysis of Forming for KEP engine Sheet matal part (KFP 엔진 박팍 부품 드로잉 성형해석)

  • 오성국;정완진;안홍;이영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.163-172
    • /
    • 1994
  • The Aerospace and automobile industries have need to avoid sheet-metal forming problem such as incorrect springback after forming and trimming process, excessive thinning/tearing, wrinking/perkering. It is common practice to use costly trial-and-error experimental methods to develop tooling and manufacturing process parameters. Experimentation should be complemented with computer simulation to reduce cost and leadtime in manufacturing and to influence the design of components. In this study, firstly we solved the springback problem after drawing and trimming process of KFP(F100-229) engine airsealing bearing support part(53H00) forming and studied on the effect of several process parameters on the gap between the formed blank and punch shape using the implicit F.E.M code(ABAQUS). Secondly by the three dimensional dynamic analysis using the explicit. F. E. M code (LS-DYNA3D), we studied on the effect of several process parameters which can be used for avoid tearing and wrinking during the drawing process.