• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.04 seconds

Optical Scanning Holography - A Review of Recent Progress

  • Poon, Ting-Chung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.

Evaluation of Tooth Movement and Arch Dimension Change in the Mandible Using a New Three-dimensional Indirect Superimposition Method

  • Oh, Hyun-Jun;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.66-79
    • /
    • 2014
  • Purpose: To analyze the amount and pattern of tooth movement and the changes in arch dimension of mandibular dentition after orthodontic treatment using a new three-dimensional (3D)-indirect superimposition method. Materials and Methods: The samples consisted of fifteen adult patients with class I bialveolar protrusion and minimal anterior crowding, treated by extraction of four first premolars with conventional sliding mechanics. After superimposition of 3D-virtual maxillary models before and after treatment using best-fit method, 3D-virtual mandibular model at each stage was placed into a common coordinate of superimposition using 3D-bite information, which resulted in 3D-indirect superimposition for mandibular dentition. The changes in mandibular dental and arch dimensional variables were measured with Rapidform 2006 (INUS Technology). Paired t-test was used for statistical analysis. Result: The anterior teeth moved backward, displaced laterally, and inclined lingually. The posterior teeth showed statistically significant contraction toward midsagittal plane. The amounts of backward movement of anterior teeth and forward movement of posterior teeth showed a ratio of 6 : 1. Although the inter-canine width increased slightly (0.8 mm, P<0.05), the inter-second premolar, inter-first molar, and inter-second molar widths decreased significantly with similar amounts (2.2 mm, P<0.05; 2.3 mm, P<0.01; 2.3 mm, P<0.001). The molar depth decreased (6.7 mm, P<0.001) but canine depth did not change. Conclusion: A new 3D-indirect superimposition of the mandibular dentitions using best-fit method and 3D-bite information can present a guideline for virtual treatment planning in terms of tooth position and arch dimension.

Assessment of Posterior Globe Flattening: Two-Dimensional versus Three-Dimensional T2-Weighted Imaging

  • Ann, Jun Hyung;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: To compare the frequency of posterior globe flattening between two-dimensional T2-weighted imaging (2D T2WI) and three-dimensional (3D T2WI). Materials and Methods: Sixty-nine patients (31 female; mean age, 44.4 years) who had undergone both 5-mm axial T2WI and sagittal 3D 1-mm isovoxel T2WI of the whole brain for evaluation of various diseases (headache [n = 30], large hemorrhage [n = 19], large tumor or leptomeningeal tumor spread [n = 15], large infarct [n = 3], and bacterial meningitis [n = 2]) were used in this study. Two radiologists independently reviewed both sets of images at separate sessions. Axial T2WI and multi-planar imaging of 3D T2WI were visually assessed for the presence of globe flattening. The optic nerve sheath diameter (ONSD) was measured at a location 4 mm posterior to each globe on oblique coronal imaging reformatted from 3D T2WI. Results: There were significantly more globes showing posterior flattening on 3D T2WI (105/138 [76.1%]) than on 2D T2WI (27/138 [19.6%], P = 0.001). Inter-observer agreement was excellent for both 2D T2WI and 3D T2WI (Cohen's kappa = 0.928 and 0.962, respectively). Intra-class correlation coefficient for the ONSD was almost perfect (Cohen's kappa = 0.839). The globes with posterior flattening had significantly larger ONSD than those without on both 2D and 3D T2WI (P < 0.001; $6.14mm{\pm}0.44$ vs. $5.74mm{\pm}0.44$ on 2D T2WI; $5.90mm{\pm}0.47$ vs. $5.56mm{\pm}0.34$ on 3D T2WI). Optic nerve protrusion was significantly more frequent on reformatted 1-mm 3D T2WI than on 5-mm 2D T2WI (8 out of 138 globes on 3D T2WI versus one on 2D T2WI; P = 0.018). Conclusion: Posterior globe flattening is more frequently observed on 3D T2WI than on 2D T2WI in patients suspected of having increased intracranial pressure. The globes with posterior flattening have significantly larger ONSD than those without.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Three-dimensional accuracy evaluation of post-curing of artificial teeth, denture bases, and denture base monoblocks manufactured by digital light processing (광중합형 프린터로 제작한 인공치아, 의치상, 모노블럭 총의치의 후경화에 따른 3차원 정확성 평가)

  • Dong-Yeon Kim;Cheon-seung Yang;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.3
    • /
    • pp.84-92
    • /
    • 2024
  • Purpose: To evaluate the effect of post-curing on the three-dimensional (3D) accuracy of artificial teeth, denture bases, and denture base monoblock manufactured using digital light processing (DLP) technology. Methods: Using an edentulous model, a 3D design was made for complete dentures. Three groups were printed by DLP: artificial teeth, denture bases, and denture base monoblock. The models were scanned, subjected to post-curing, and scanned again. Three-dimensional analysis was performed based on the post-treatment differences among the three groups. Statistical analysis was performed using SPSS Statistics ver. 22.0 (IBM), and the Mann-Whitney U-test and Kruskal-Wallis test were employed as nonparametric tests. Results: The complete denture monoblock (CM) and complete denture artificial teeth (CA) groups showed the lowest and highest errors at 15.13 and 23.37 ㎛, respectively. The groups did not show significant differences (p>0.05). In the significance test among the three groups, no significance was found in the CA group; however, significant differences were found between the complete denture base (CB) and CM groups. In addition, the three groups showed significant differences (p<0.05). Conclusion: Although deformation may occur during the post-curing process, it is within the clinically acceptable range. Future comparative studies using different 3D printers and searching for ways to minimize errors through optimization of the post-curing process are warranted.

A Study on the Comparison of two and Three Dimensional Computer Simulations in Injection Molding (사출성형의 2차원 및 3차원 해석의 비교에 관한 연구)

  • Park, Jae Woong;Ahn, Ji Hye;Park, Yong Min;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • There exist many merits in designing products and setting operational condition when computer aided engineering (CAE) is adopted in injection molding process. CAE also gives increasing efficient of molding, reducing developing time of product, and maintaining high quality products. Specially, it suggests design guidelines for new products and reducing wasting time to get steady state. Two and three dimensional computer simulations are available in injection molding and those results are somewhat different. However there are no guidelines for 2D and 3D computer simulations in using CAE in injection molding even though it is widely used in plastic industry. In this study, two and three dimensional computation results were compared for various part thickness, part shape, and number of finite element. Subsequently computational results were compared with experimental data such as pressure and temperature. The guidelines in two and three dimensional CAE analysis have been suggested through this study.

Development of a Three Dimensional Last Data Generation System using FFD (FFD를 이용한 3차원 라스트 데이터 생성 시스템)

  • 박인덕;임창현;김시경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.700-706
    • /
    • 2003
  • This paper presents a 3D last design system that provides the 3-dimensional last data based on the FFD(Free Form Deformation) method. The proposed system utilizes the control points for deformation factor to convert from the 3D point cloud foot data to the 3D point cloud last data. The deformation factor of the FFD is obtained from the conventional last design technique, and constructed on the FFD lattice based on the bottom view and lateral view of the measured 3D point cloud foot data. In addition, the control points of FFD lattice is decided on the anatomical points of foot. The deformed 3D last obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the proposed system have the descent 3D last data based on the openGL window.