• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.035 seconds

Three-dimensional and topographic relationships between the orbital margins with reference to assessment of eyeball protrusion

  • Shin, Kang-Jae;Lee, Shin-Hyo;Koh, Ki-Seok;Song, Wu-Chul
    • Anatomy and Cell Biology
    • /
    • v.50 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • This study investigated the topographic relationships among the eyeball and four orbital margins with the aim of identifying the correlation between orbital geometry and eyeball protrusion in Koreans. Three-dimensional (3D) volume rendering of the face was performed using serial computed-tomography images of 141 Koreans, and several landmarks on the bony orbit and the cornea were directly marked on the 3D volumes. The anterior-posterior distances from the apex of the cornea to each orbital margin and between the orbital margins were measured in both eyes. The distances from the apex of the cornea to the superior, medial, inferior, and lateral orbital margins were 5.8, 5.8, 12.0, and 17.9 mm, respectively. Differences between sides were observed in all of the orbital margins, and the distances from the apex of the cornea to the superior and inferior orbital margins were significantly greater in females than in males. The anterior-posterior distance between the superior and inferior orbital margins did not differ significantly between males (6.3 mm) and females (6.2 mm). The data obtained in this study will be useful when developing practical guidelines applicable to forensic facial reconstruction and orbitofacial surgeries.

The measurement of nose dimensions through the three-dimensional reformation images after nasal bone fracture

  • Jang, Seung Bin;Han, Dong Gil
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • Background: After closed reduction, patients are sometimes concerned that their external nasal shapes have changed. The aim of this study was to investigate and explain changes in nasal shape after surgery through objective photogrammetric anthropometry measurements taken through three-dimensional (3D) reformed computed tomography (CT) images. Methods: Our study included 100 Korean patients who underwent closed reduction of isolated nasal bone fracture from January 2016 to June 2017. Using the ruler tool in Adobe Photoshop CS3, we measured preoperative and postoperative nasal base heights, long nostril axis lengths, both nasal alar angles, and amount of nasal deviation through the 3D reformation of soft tissue via CT scans. We then compared the dimension of nose. Results: The amount of postoperative correction for nasal base height was 1.192 mm. The differences in nostril length between each side were found to be 0.333 mm preoperatively and 0.323 mm postoperatively. The differences in the nasal alar angle between each side was $1.382^{\circ}$ preoperatively and $1.043^{\circ}$ postoperatively. The amount of nasal deviation was found to be 5.248 mm preoperatively and 1.024 mm in postoperatively. Conclusion: After the reduction of nasal bone fractures, changes in nasal dimensions were noticeable in terms of nasal deviation but less significant in nasal tips, except for changes in nasal alar angles, which were notable.

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

A Coupled Three-Dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 용담호 3차원 수리-수질 연동 모델링)

  • Chung, Se Woong;Lee, Jung Hyun;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.413-424
    • /
    • 2011
  • The study was aimed to evaluate the applicability of a three-dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM for Yongdam Reservoir, Korea. The model was applied for the simulations of hydrodynamics, thermal stratification processes, stream density flow propagation, and water quality parameters including dissolved oxygen, nutrients, organic materials, and algal biomass (chl-a) for the period of June to December, 2006. The field data observed at four monitoring stations (ST1~ST4) within the reservoir were used to validate the models performance. The model showed reasonable performance nevertheless low frequency boundary forcing data were provided, and well replicated the physical, chemical, and biological processes of the system. Simulated spatial and temporal variations of water temperature, nutrients, and chl-a concentrations were moderately consistent with the field observations. In particular, the model rationally reproduced the succession of different algal species; i.e., diatom dominant during spring and early summer, after then cyanobacteria dominant under warm and stratified conditions. ELCOM-CAEDYM is recommendable as a suitable coupled 3D hydrodynamic and water quality model that can be effectively used for the advanced water quality management of large stratified reservoirs in Korea.

Human Tissue-Engineered Skeletal Muscle: A Tool for Metabolic Research

  • Ji-Hoon Kim;Seung-Min Yu;Jang Won Son
    • Endocrinology and Metabolism
    • /
    • v.37 no.3
    • /
    • pp.408-414
    • /
    • 2022
  • Skeletal muscle is now regarded as an endocrine organ based on its secretion of myokines and exerkines, which, in response to metabolic stimuli, regulate the crosstalk between the skeletal muscle and other metabolic organs in terms of systemic energy homeostasis. This conceptual basis of skeletal muscle as a metabolically active organ has provided insights into the potential role of physical inactivity and conditions altering muscle quality and quantity in the development of multiple metabolic disorders, including insulin resistance, obesity, and diabetes. Therefore, it is important to understand human muscle physiology more deeply in relation to the pathophysiology of metabolic diseases. Since monolayer cell lines or animal models used in conventional research differ from the pathophysiological features of the human body, there is increasing need for more physiologically relevant in vitro models of human skeletal muscle. Here, we introduce recent studies on in vitro models of human skeletal muscle generated from adult myogenic progenitors or pluripotent stem cells and summarize recent progress in the development of three-dimensional (3D) bioartificial muscle, which mimics the physiological complexity of native skeletal muscle tissue in terms of maturation and functionality. We then discuss the future of skeletal muscle 3D-organoid culture technology in the field of metabolic research for studying pathological mechanisms and developing personalized therapeutic strategies.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.

Octree model based fast three-dimensional object recognition (Octree 모델에 근거한 고속 3차원 물체 인식)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

Coherence Gated Three-dimensional Imaging System using Organic Photorefractive Holography

  • Hwang, Ui-Jung;Choi, Jongwan;Kim, Chuntae;Kim, Won-Guen;Oh, Jin-Woo;Kim, Nakjoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.938-940
    • /
    • 2014
  • This paper discusses a coherence-gated three-dimensional imaging system based on photorefractive holography, which was applied to imaging through turbid media with a view to developing biomedical instrumentation. A rapid response photorefractive device doped with 2,4,7-trinitro-9-fluorenylidene malononitrile was used to generate the hologram grating. The estimated depth resolution was $20{\mu}m$, which corresponds to the coherence length of the light source. In this coherence imaging system, tomographic imaging of a 3-dimensional object composed of a $50{\mu}m$ thick cylindrical layer was achieved. The proposed coherence imaging system using an organic photorefractive material can be used as an optical tomography system for biological applications.

Stencil-based 3D facial relief creation from RGBD images for 3D printing

  • Jung, Soonchul;Choi, Yoon-Seok;Kim, Jin-Seo
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.272-281
    • /
    • 2020
  • Three-dimensional (3D) selfie services, one of the major 3D printing services, print 3D models of an individual's face via scanning. However, most of these services require expensive full-color supporting 3D printers. The high cost of such printers poses a challenge in launching a variety of 3D printing application services. This paper presents a stencil-based 3D facial relief creation method employing a low-cost RGBD sensor and a 3D printer. Stencil-based 3D facial relief is an artwork in which some parts are holes, similar to that in a stencil, and other parts stand out, as in a relief. The proposed method creates a new type of relief by combining the existing stencil techniques and relief techniques. As a result, the 3D printed product resembles a two-colored object rather than a one-colored object even when a monochrome 3D printer is used. Unlike existing personalization-based 3D printing services, the proposed method enables the printing and delivery of products to customers in a short period of time. Experimental results reveal that, compared to existing 3D selfie products printed by monochrome 3D printers, our products have a higher degree of similarity and are more profitable.