• Title/Summary/Keyword: 316 Stainless Steel

Search Result 463, Processing Time 0.027 seconds

Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering (방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료)

  • Kwon, Hansang
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Design of Diaphragm for Ultra High Pressure Sensors and Its performance Evaluation Using a PZT Actuated Deformation Tester (초고압 압력센서용 다이어프램 설계 및 PZT 구동 변형시험기를 이용한 성능평가)

  • Yun, Dae Jhoong;Ahn, Jung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • This research aims at designing a diaphragm made of SUS316L stainless steel for ultra high pressure sensors and evaluating its performance with a PZT driven deformation tester instead of high pressure chamber testing up to 100 MPa. Finite element method analysis indicates that the optimum thickness of a flat diaphragm is 1.5 mm not only to secure safety of sensors up to 100 MPa but also to enhance displacement measuring sensitivity. For this thickness, the maximum displacement at the center of the diaphragm is $5.3{\mu}m$. The PZT actuator must offer a force of 1,669 N to create a pressure of 100 MPa at the diaphragm surface in order to obtain a displacement of $5.3{\mu}m$. The performance evaluation by the PZT driven tester demonstrates nearly the same results as the same results as the sensors tested in the ultra high pressure chamber.

Development of the KSTAR Superconductor

  • Lim B.S.;Choi J.Y.;Lee S.I.;Kim D.J.;Park W.W.;Woo I.S.;Song Y.J.;Song N.H.;Kim C.S.;Lee D.G.;Kim K.P.;Park H.T.;Joo J.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.25-28
    • /
    • 2006
  • The magnet system of KSTAR(korean Superconducting Tokamak Advanced Research) is consisted of 16 TF (Toroidal Field) coils and 14 PF (Poroidal Field) coils. Internal cooling CICC(Cable in Conduit Conductor) type conductor is used for both of TF and PF coil systems. The conduit material for $Nb_3Sn$ cable is Incoloy 908 and 316LN stainless-steel was used as conduit material for NbTi cable. $Nb_3Sn$ CICC is used for all TF coils and PF1-5 coils while NbTi CICC is used for PF6 and 7 coils. $Nb_3Sn$ and NbTi strands were made for KSTAR superconducting strand. They are satisfied with KSTAR superconducotr requirements. The $Nb_3Sn$ strands supplied from three companies; MELCO (Mitsubishi Electric Co.), OAS (Outokumpu Advanced Superconductor) and KAT (Kiswire Advanced Technology) were used. A special CICC jacketing system is developed for the KSTAR CICC fabrication which uses the tube-mill process consisted of forming, welding, sizing and squaring procedures. The. procedures for cabling and jacketing of CICC for TF and PF coils and their results including the geometrical specification and characteristics of strands are described.

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

A Study on the Corrosion Characteristics Evaluation for Reactor Material of Waste Water Treatment (폐수처리 반응기용 재질의 부식특성 평가에 대한 연구)

  • Kim, Ki-Tae;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • As the operating conditions in a supercritical oxidation reactor are set in high temperature with high pressure causing a reactor suffering from the harsh circumstances. It means the reactor adopts itself with Fe-Cr alloy in acidic atmosphere with low pH value and Ni alloy in basic atmosphere with high pH value due to its superior corrosion resistance. The study, whose target waster water is pertinent to the latter part, has selected Ni alloy such as ostenite type stainless steel 304 and 316, superstainless steel AL6XN, Inconel 625, MAT 21, and titanium Gr. 5 in order to measure corrosion resistance against those samples under the same conditions of temperature and pressure applied for a supercritical oxidation reactor. The result shows the identifiable difference in corrosion resistance by observing the surface states through a scanning probe microscope as well as measuring the weight loss through making the samples above deposited in wastewater for two-week and four-week stay. The purpose of this corrosion experiment is to identify the most corrosion-resistant material among sample species pre-selected according to pH concentration of wastewater in pursue of applying for a reactor exposed to the extreme corrosion environment. It is because such a reactor made of a verified material enables to safeguard a stable operation under the supercritical wastewater processing facility.

  • PDF

Heat Transfer Characteristics of Bulkhead Penetration Piece for A60 Class Compartment II: Fire Resistance Test for Piece Material and Insulation Types (A60급 구획 적용 격벽 관통용 관의 열전달 특성 II: 관 재질 및 단열재 종류에 따른 방화시험)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.340-349
    • /
    • 2019
  • In the case of a fire accident on a ship or an offshore plant, the design of the bulkhead penetration piece must be verified via a fire test procedure (FTP), as specified by the Maritime Safety Committee (MSC). The purpose of this study is to verify both the numerical analysis results and the design specifications for penetration pieces that could be applied to the A60 class bulkhead division. In this study, the FTP was carried out in accordance with the test procedure prescribed in the MSC regulation. In order to review the fire resistance performance according to the material type, bulkhead penetration pieces for the FTP were made from brass, carbon steel for machine structures (S45C), and austenite stainless steel (SUS316). In addition, spray-type insulation and mechanical fastener-type insulation were applied to investigate the fire resistance performance according to the type of insulation. To verify the heat transfer numerical analysis results for the A60 class bulkhead penetrating piece from this test study, the design specifications of the penetrating piece material and the insulation type applicable to a ship and an offshore plant were identified.

Development of Drainage Water Disinfection System by Electric Shock in Recirculating Soilless Culture (순환식 수경재배에서 배액의 전기충격살균법 연구)

  • Lee, Mun Haeng;Kim, Sung Eun;Lee, Sang Don;Lee, Jae Eun;Kim, Hak Sun;Cho, Suk Keong;Sim, Sang Youn;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This study was conducted to develop the disinfection system using electric shock for recycled nutrient solution in recycling soilless culture. Stainless steel (SUS 316) was found as the most appropriate electrode material for electrical disinfection system from the view of high electrical conductivity, low electric resistance, and low price. There were no changes in nutritional elements when the electric shock passed through the nutrient solution by stainless steel electrode. The amount of electric current increased with width than thickness of the electrode. The farther the distance between the electrodes was increased the time to reach out the aimed amount of current. The electric shock was applied to Ralstonia solanacearum and Fusarium oxysporum as representative bacteria and also fungi. Any of those pathogens were killed with the percentage of higher than 97% in the condition of 15VDC or 24VDC.

The Corrosion Behavior of Li/K Carbonate Melts with CaCO3 Additives on Separator Plate in the Molten Carbonate Fuel Cell in the Anode Environments

  • Cho, Kyehyun;Lee, Chul-Hwan;Sung, Zu-Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.129-136
    • /
    • 2006
  • High temperature corrosion behavior of AISI-type 316L stainless steel for the MCFC(molten carbonate fuel cell) bipolar application was studied by immersion test and penetration attack method in anode environment ($650^{\circ}C$, $Li_2CO_3/K_2CO_3=62/38$ mol%, $H_2/CO_2=80/20$ vol%) without or with different $CaCO_3$ content. Not only immersion test method but also morphological observation of samples in the carbonate melts are adopted as experimental methods. With aid of the morphological observation of cross section of samples immersed in a carbonate melt was possible to obtain penetration attack. The concentration effect of $CaCO_3$ inhibitor was investigated in order to verify the optimum concentration for practical application in MCFC stack operation. The corrosion rate in the presence of $CaCO_3$ was proven to be decreased as a function of $CaCO_3$ concentration. The corrosion rate in the presence of $CaCO_3$ was measured with a value of 6.9 mpy which is 2.4 times lower than that of inhibitor-free electrolyte. The cross section microscopy revealed that the internal penetration by oxidation in molten carbonate is very severe. In this case, the attack was occurred not only dissolution loss in the electrolyte by corrosion reaction but also weight gain through oxide layer by internal penetration.

Investigation of the TiCrN Coating Deposited by Inductively Coupled Plasma Assisted DC Magnetron Sputtering. (Inductively Coupled Plasma Assisted D.C. Magnetron Sputtering법으로 제작된 TiCrN 코팅층의 특성 분석)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.267-274
    • /
    • 2009
  • Titanium Chromium Nitrided (TiCrN) coatings were deposited on stainless steel 316 L and Si (100) wafer by inductively coupled plasma assisted D.C. magnetron sputtering at the various sputtering power on Cr target and $N_2/Ar$ gas ratio. Increasing the sputtering power of Cr target, XRD patterns were changed from TiCrN to nitride $Cr_2Ti$. The maximum hardness was $Hk_{3g}$ 3900 at $0.3\;N_2/Ar$ gas ratio. The thickness of the TiCrN films increased as the Cr target power increased, and it showed over $Hk_{5g}3100$ hardness at 100 W, 150 W. TiCrN films were deposited by the ICP assisted DC magnetron sputtering shown good wear resistance as the $N_2/Ar$ gas ratio was 0.1, 0.3.