Investigation of the TiCrN Coating Deposited by Inductively Coupled Plasma Assisted DC Magnetron Sputtering.

Inductively Coupled Plasma Assisted D.C. Magnetron Sputtering법으로 제작된 TiCrN 코팅층의 특성 분석

  • Cha, B.C. (School of Materials Science and Engineering, University of UIsan) ;
  • Kim, J.H. (School of Materials Science and Engineering, University of UIsan) ;
  • Lee, B.S. (School of Materials Science and Engineering, University of UIsan) ;
  • Kim, S.K. (School of Materials Science and Engineering, University of UIsan) ;
  • Kim, D.W. (School of Materials Science and Engineering, University of UIsan) ;
  • Kim, D. (School of Materials Science and Engineering, University of UIsan) ;
  • You, Y.Z. (School of Materials Science and Engineering, University of UIsan)
  • 차병철 (울산대학교 첨단소재공학부) ;
  • 김준호 (울산대학교 첨단소재공학부) ;
  • 이병석 (울산대학교 첨단소재공학부) ;
  • 김선광 (울산대학교 첨단소재공학부) ;
  • 김대욱 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부) ;
  • 유용주 (울산대학교 첨단소재공학부)
  • Published : 2009.09.30

Abstract

Titanium Chromium Nitrided (TiCrN) coatings were deposited on stainless steel 316 L and Si (100) wafer by inductively coupled plasma assisted D.C. magnetron sputtering at the various sputtering power on Cr target and $N_2/Ar$ gas ratio. Increasing the sputtering power of Cr target, XRD patterns were changed from TiCrN to nitride $Cr_2Ti$. The maximum hardness was $Hk_{3g}$ 3900 at $0.3\;N_2/Ar$ gas ratio. The thickness of the TiCrN films increased as the Cr target power increased, and it showed over $Hk_{5g}3100$ hardness at 100 W, 150 W. TiCrN films were deposited by the ICP assisted DC magnetron sputtering shown good wear resistance as the $N_2/Ar$ gas ratio was 0.1, 0.3.

Keywords

References

  1. B. Navinsek, P. Panjan, and A. Cvelbar : Surface and Coatings Technology 74-75 (1995) 155-161 https://doi.org/10.1016/0257-8972(95)08214-X
  2. J. L. Mo and M. H. Zhu : Applied Surface Science 255 (2009) 7627-7634 https://doi.org/10.1016/j.apsusc.2009.04.040
  3. C. Gautier, H. Moussaoui, F. Elstner and J. Machet : Surface and Coatings Technology 86-87 (1996) 254-262 https://doi.org/10.1016/S0257-8972(96)02951-9
  4. S. K. Kim, B. C. Cha and J. S. Yoo : Surface and Coatings Technology 177-178 (2004) 434-440 https://doi.org/10.1016/j.surfcoat.2003.09.021
  5. J. G. Han, H. S. Myung, H. M. Lee and L. R. Shaginyan : Surface and Coatings Technology 174-175 (2003) 738-743 https://doi.org/10.1016/S0257-8972(03)00565-6
  6. M. Cekada, P. Panjan, B. Navinsek and F. Cvelbar : Vacuum 52 (1999) 461-467 https://doi.org/10.1016/S0042-207X(98)00331-5
  7. H. Hasegawa, A. Kimura and T. Suzuki : Surface and Coatings Technology 132 (2000) 76-79 https://doi.org/10.1016/S0257-8972(00)00737-4
  8. S. M. Aouadi, K. C. Wong, K. A. R. Mitchell, F. Namavar, E. Tobin, D. M. Mihut and S. L. Rohde : Applied Surface Science 229 (2004) 387-394 https://doi.org/10.1016/j.apsusc.2004.02.019
  9. Y. Massiani, P. Gravier, L. Fedrizzi and F. Marchetti : Thin Solid Films 261 (1995) 202-208 https://doi.org/10.1016/S0040-6090(94)06489-X
  10. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J. H. Joo and J. J. Lee : Surface and Coatings Technology 169-170 (2003) 41-44 https://doi.org/10.1016/S0257-8972(03)00071-9
  11. K. M. Nagasaka. Hiroshi, Miyasaka. Matsuho, Kataoka. Tadashi Cr-containing titanium nitride film in: United States Patent, Ebara Corporation (Tokyo, JP), USA, (2003)
  12. S. S. L. B. Freund, Thin Film Materials, Cambridge University Press, (2003)
  13. J. T. Chen, J. Wang, F. Zhang, G. A. Zhang, X. Y. Fan, Z. G. Wu and P. X. Yan : Journal of Alloys and Compounds 472 (2009) 91-96 https://doi.org/10.1016/j.jallcom.2008.04.083