• Title/Summary/Keyword: 300 GHz

Search Result 161, Processing Time 0.022 seconds

10-Gbit/s Wireless Communication System at 300 GHz

  • Chung, Tae Jin;Lee, Won-Hui
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.386-396
    • /
    • 2013
  • A 10-Gbit/s wireless communication system operating at a carrier frequency of 300 GHz is presented. The modulation scheme is amplitude shift keying in incoherent mode with a high intermediate frequency (IF) of 30 GHz and a bandwidth of 20 GHz for transmitting a 10-Gbit/s baseband (BB) data signal. A single sideband transmission is implemented using a waveguide-tapered 270-GHz high-pass filter with a lower sideband rejection of around 60 dB. This paper presents an all-electronic design of a terahertz communication system, including the major modules of the BB and IF band as well as the RF modules. The wireless link shows that, aided by a clock and data recovery circuit, it can receive $2^7$-1 pseudorandom binary sequence data without error at up to 10 Gbit/s for over 1.2 m using collimating lenses, where the transmitted power is 10 ${\mu}W$.

A 1.485-Gbit/s Video Signal Transmission System at Carrier Frequencies of 240 GHz and 300 GHz

  • Chung, Tae-Jin;Lee, Won-Hui
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.965-968
    • /
    • 2011
  • A 1.485-Gbit/s video signal transmission system at carrier frequencies of 240 GHz and 300 GHz was implemented and demonstrated. The radio frequency front-ends are composed of Schottky barrier diode subharmonic mixers (SHMs), frequency triplers, and diagonal horn antennas for the transmitter and receiver. Amplitude shift keying with an intermediate frequency of 5.94 GHz was utilized as the modulation scheme. A 1.485-Gbit/s video signal with a high-definition serial digital interface format was successfully transmitted over a wireless link distance of 4.2 m and displayed on an HDTV with a transmitted average output power of 20 ${\mu}W$ at a 300-GHz system.

LAM 공정을 위한 Underpass를 갖지 않는 나선형 박막 인덕터의 주파수 특성 (Frequency Characteristics of Spiral Planar Inductor without Underpass for LAM Process)

  • Kim, Jae-Wook
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2008
  • In this study, we propose that the structures of spiral inductors have the environment advantage utilizing direct-write and LAM(Laser Ablation of Microparticles) processes without process step of lithography and etching etc. of existing semiconductor process. The structures of inductors have Si thickness of 540${\mu}m$, $SiO_2$ thickness of 3${\mu}m$. The width of Cu coils and the space between segments have 30${\mu}m$, respectively, using for direct-write and LAM processes. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The inductors without underpass and via have inductance of 1.11nH over the frequency range of 300 to 800 MHz, quality-factor of maximum 38 at 5 GHz, SRF of 18 GHz. Otherwise, inductors with underpass and via have inductance of 1.12nH over the frequency range of 300 to 800 MHz, quality-factor of maximum 35 at 5 GHz, SRF of 16 GHz.

  • PDF

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

A 300 GHz Imaging Detector and Image Acquisition Based on 65-nm CMOS Technology (65-nm CMOS 300 GHz 영상 검출기 및 영상 획득)

  • Yoon, Daekeun;Song, Kiryong;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.791-794
    • /
    • 2014
  • In this work, a 300 GHz imaging detector has been developed and image has been acquired in a 65-nm CMOS technology. The circuit was designed based on the square-law of MOSFET devices. The fabricated detector exhibits a maximum responsivity of 2,270 V/W and minimum NEP of $38pW/Hz^{1/2}$ at 285 GHz, and NEP< ${\sim}200pW/Hz^{1/2}$ for 250~305 GHz range. The chip size is $400{\mu}m{\times}450{\mu}m$ including the probing pads and a balun, while the core of the circuit occupies only $150{\mu}m{\times}100{\mu}m$.

Frequency Characteristics of Octagonal Spiral Planar Inductor (팔각 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1284-1287
    • /
    • 2012
  • In this study, we propose the structures of octagonal spiral planar inductors without underpass and via, and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The octagonal spiral planar inductors have inductance of 2.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18.9 at 5 GHz, SRF of 11.1 GHz. Otherwise, square spiral planar inductors have inductance of 2.8nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18.9 at 4.9 GHz, SRF of 10.3 GHz.

Frequency Characteristics of 2-Layer Spiral Planar Inductor (2층 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4101-4106
    • /
    • 2011
  • In this study, we propose that the structures of 2-layer spiral planar inductors have a lower spiral coil and via increasing inductance in limited possession are and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The 2-layer spiral planar inductors have inductance of 3.2nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 8.2 at 2.5 GHz, SRF of 5.8 GHz. Otherwise, 1-layer spiral planar inductors have inductance of 1.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18 at 8 GHz, SRF of 19.2 GHz.

Design of Broadband Corrugated Waveguide Polarizer (광대역 커러게이트 도파관 편파기 설계)

  • 양두영;이민수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • In this paper, the design theory of the corrugated polarizer using square waveguide is proposed. In order to analysis the characteristic of square waveguide discontinuity as well as achievement of the low VSWR, we apply the modified $TE^\chi_mn$ mode matching method and the corrugated exponential function to the polarizer design. The results show a broadband characteristic that phase shift angle is nearly appeared $90^{\circ}$ in the range of 11.7-15.8GHz. Especially, we could be designed the Ku-band dual polarizer for the satellite broadcasting transponder with 300MHz bandwidth. Its phase shift angle and maximum VSWR, axial ratio are $90^{\circ},\pm1^{\circ}$, 1.03, and 1.0001 in the range of 11.7-12.0GHz and 14.5-14.8GHz, respectively.

  • PDF

Construction of a microwave free electron laser and studies of its characteristics (마이크로파 자유전자 레이저의 제작 및 동작특성 연구)

  • 이관철;정기형
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 1992
  • A microwave free electron laser which consists of Marx generator, vacuum diode, bifilar helical wiggler, and guide solenoid was designed and constructed. The analysis of the magnetic field distributions of the bifilar helical wiggler and computer simulation of electron trajectories with the perpendicular effect of space charges led to the conclusion that the magnetic field distributions are suitable for the electron beam injection. Output frequency in a single $TE_{11}$

  • PDF

A High Power 60 GHz Push-Push Oscillator Using Metamorphic HEMT Technology (Metamorphic HEMT를 이 용한 60 GHz 대역 고출력 Push-Push 발진기)

  • Lee Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.659-664
    • /
    • 2006
  • This paper reports a high power 60 GHz push-push oscillator fabricated using $0.12{\mu}m$ metamorphic high electron-mobility transistors(mHEMTs). The devices with a $0.12{\mu}m$ gate-length exhibited good DC and RF characteristics such as a maximum drain current of 700 mA/mm, a peak gm of 660 mS/mm, an $f_T$ of 170 GHz, and an $f_{MAX}$ of more than 300 GHz. By combining two sub-oscillators having $6{\times}50{\mu}m$ periphery mHEMT, the push-push oscillator achieved a 6.3 dBm of output power at 59.5 GHz with more than - 35 dBc fundamental suppression. The phase noise of - 81.5 dBc/Hz at 1 MHz offset was measured. This is one of the highest output power obtained using mHEMT technology without buffer amplifier, and demonstrates the potential of mHEMT technology for cost effective millimeter-wave commercial applications.