• Title/Summary/Keyword: 3.5 KHz 탐사

Search Result 6, Processing Time 0.016 seconds

Suppression of Swell Effect in 3.5KHz Subbottom Profiler Data (3.5KHz 천부지층탐사자료의 너울영향제거)

  • 이호영;구남형;박근필;김정기;김원식;강동효
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • 3.5KHz subbottom profiling systems are useful for delineating of shallow (up to 10~100m below the sea bottom) geological structure. These systems are generally used to image geological structures with less than 1m of vertical resolution. However swell in the sea is quite often higher than 1m, causing degradation in the quality of the 3.5KHz subbottom profiles. In this paper, we show the quality of digitally recorded data can be enhanced by the suppression of swell effect. Prior to suppression of swell effect, sea bottom detection procedure was applied using the characteristics that the amplitude of sea bottom reflection is high. To suppress the swell effect, we applied moving average method and high-cut filtering method using the extracted water depth of adjacent traces. Acceptable results were obtained from both methods. In the case of bad quality data or shallow data interfered with direct wave, the suppression of swell effect is difficult due to incorrect sea bottom detection.

Sub-Bottom Profile Analysis Using Dual Frequency Prototype 15/100 KHz (이중 주파수에 의한 천해 천부지층의 분해력과 투과력에 관한 사고)

  • Kim, So-Ku
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 1993
  • Shallow sub-bottom reflection recorders are obtained using dual frequency (15/100 KHz). The main goal of this study is to enhance the resolving power and penetration for the sub-bottom reflection of the sub-marine seismic exploration. The Fresnel zones of spherical waves for the near-field are of great importance to reach the high resoluton. In case a target to detects than the Fresnel radius, a diffraction hyperbola on the recorder is observed. A larger attenuation of sand makes less penetration than the smaller attenuation of silt and clay. It is found that the selective frequency as well as the seismic energy generation is the most important factors for sub-marine exploration. This technique of using dual frequency sub-marine exploration may be applied to detect the sub-bottom sludge soil, ocean contamination and marine archaeological relics.

  • PDF

Estimation of the thickness of floating silty clay sediment using dual frequency single beam echo sound system (이중 주파수 에코 사운드 시스템을 이용한 부니층 두께 조사)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.219-231
    • /
    • 2002
  • Single beam echo sounding was used to delineate bathymetry sea bottom in the area of hydrography and marine navigation. This research was aimed at measuring the thickness of floating silty clay sediment with dual frequencies echo sounding system. There occur discrepancies in penetrating depth through sea beds between high frequency(200 KHz) and low(33 KHz) frequency. RI density logging was employed to characterize the floating silty clay sediment of Guangyang bay, which was chosen to investigate the proposed site for reclamation field. The volume of floating silty clay sediment was used to design by estimating size of reclamation site. The estimation strategies developed in this study will be readily applicable to measure the Pattern of sedimentation via regular hydrographic survey in the future.

  • PDF

Sediment Distribution of the Yeosu Sound on the Southern Coast of Korea Based on the 3.5 kHz Profiles (3.5 kHz 지층단면도에 나타난 여수해만의 퇴적물 분포)

  • 오진용;이연규;윤혜수;김성렬;최정민
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2000
  • The 3.5 KHz seismic survey was carried out for studying the distribution pattern of the unconsolidated sediments of the Yeosu Sound on the southern coast of the Korean Peninsula. Field data originally recorded in analog are converted and processed digitally to recover the high-resolution acoustic profiles. Across the north-south trending channel with the depth of 20~30 m, different seismic facies types are observed in the top section of sediments. The western part is characterized by the continuous high-amplitude subparallel reflectors within which the acoustic turbidity as a token of the presence of gas is commonly observed, whereas the counterpart largely shows poor reflectors and has shallow acoustic basement toward the north. The dissimilarity of the seismic expression across the channel can be interpreted as the result of the change of depositional environment caused by relative sea-level fluctuations of the late-Quaternary. During the last glacial period, the Yeosu Sound was exposed and eroded by the paleo-Seomjin River. By the following rapid rise of sea level, it was covered by the transgressive sand sheet. When the sea level reached near the present position, the muddy sediment has accumulated only in the western part of the Yeosu Sound as its depositional front has moved toward the north. It is partly caused by the asymmetrical tidal current in the Yeosu Sound where the flood near the bottom has stronger current flow and contains more suspended sediments.

  • PDF

A study on the Development of Transducer Detecting Infrasonic (초저주파를 검출하는 변환기의 개발에 대한 연구)

  • 이성백;김재환;강영창;이준웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1981
  • Infrasonic transducer made with dielectric materials, such as polytetrafluoroethyleme(PTFE)film. The experimental result obtained that the response is within $\pm$1.5dB from 0.1Hz to 7KHz, and that sensitivities of typical transducer are fixed -60dB. The time constant of the transducer at room temperature is over 60 years, and the activation energy of the value of 1.1eV at 343K acquired. This transducer can have application to high-quality communication system, seismological observation etc.

  • PDF

Interpretation of Gravity, Magnetic and High-resolution (3.5 kHz) Seismic Data in the Powell Basin, Antarctica (남극 파월분지 지역의 중,자력 및 고해상 (3.5 KHZ) 탄성파 자료 해석)

  • Jin, YoungKeun;Kim, KyuJung;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Gravity, magnetic and high-resolution seismic surveys were carried out in the Powell Basin to examine tectonic structure and recent sedimentation on Dec. 2002. The trend of negative gravity anomalies along the spreading axis of the Powell Basin changes from northwest to east-west toward south. Both boundaries of the basin with the Antarctic Peninsula and the South Orkey micro-continent show negative magnetic anomalies, which indicates that the boundaries were continental rift areas in the initial stage of spreading. Magnitude of the magnetic anomalies corresponding to the axis of the basin is rather small compared to those of normal spreading axises in other regions. Such small anomalies would be caused by reduction of magnetic strength of oceanic crust below thick sediments due to thermal alternation. High-resolution (3.5 kHz) seismic profiles reveal that top of the South Scotia Ridge is a flat terrain coverd with thin coarse sediments by glacial erosion. Thick oceanic sediments are deposited in the central part of the basin. Little deformation in the oceanic sediments indicates that the Powell Basin has been in stable tectonic environment after spreading of the basin stopped.

  • PDF