• Title/Summary/Keyword: 3.5 GHz 대역

Search Result 726, Processing Time 0.022 seconds

Design of a Multiband MIMO Antenna for USB Dongle Application (USB Dongle에 적용을 위한 다중 대역 MIMO 안테나 설계)

  • Lee, Young-Ki;Choi, Jea-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This paper proposes a multiband Multi-Input Multi-output(MIMO) antenna for universal serial bus(USB) dongle application. The proposed MIMO antenna consists of a modified meander strip line and inverted L stub. The two radiating elements of the MIMO antenna are symmetrically placed with respect to the center of the ground plane. The fabricated antenna satisfied a VSWR below 3 and an efficiency over 35 % in the LTE band 13, 17(704 MHz-787 MHz), DCS/PCS/WCDMA band(1.71 GHz-2.17 GHz), and LTE band 7(2.5 GHz-2.7 GHz). The envelope correlation coefficient(ECC) has below 0.45 in the LTE band 13, 17 and 0.1 in the DCS/PCS/WCDMA band and LTE band 7, respectively.

Development of Single Feed Antenna for Integrated Public Network and 5G Network Frequency Dual-band Cover (통합 공공망과 5G 주파수 이중대역 커버용 단일 급전 안테나 개발)

  • Hong, Ji-Hun;Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.233-240
    • /
    • 2019
  • In this paper, due to the development of 5G communication technology, an antenna capable of covering both LTE and 5G bands is currently needed. In addition, we designed and manufactured a single feed antenna for the integrated public network (LTE) and 5G frequency dual band cover to satisfy the frequency bandwidth of more than 10% in each band. The antenna designed by adopting the dipole of the basic dipole antenna in a planar structure is a form in which the radiating element is vertically extended at all of the 700 MHz antennas and folded into a 'ㄷ' shape. In addition, the radiating element of the 700MHz band serves as a reflector of the 3.5GHz band radiating element. As a result, the 700 MHz band -10 dB bandwidth 104 MHz(14.8%) and 3.5 GHz band -10 dB bandwidth 660 MHz(18.8%) were obtained and the radiation pattern characteristic resulted in gains of 8.46 dBi, beam width E-plane 55°, H-plane 81° and 3.5 GHz bands 6.14 dBi, beamwidth E-plane 79°, H-Plane 49°.

A Design of a Planar UWB Antenna with Notched WLAN band by Using Slot and Slit (슬롯과 슬릿을 사용하여 무선랜 대역이 제거된 평면형 UWB안테나 설계)

  • Lee, Chang-Joo;Kim, Su-Hoon;Park, Young-Bon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.105-110
    • /
    • 2012
  • In this paper, A planar UWB antenna with notched WLAN band, 802.11a band (5.15 ~ 5.825GHz), by using slot and slit is designed by using CST Microwave Studio. The notched bandwidth can be controlled by the length and width of the slot and slit in the patch and ground plane and it's radiation characteristics are examined through the experiments. The bandwidth based on the -10dB return loss level can be covered the full UWB band (3.1 ~ 10.6GHz) with a notched WLAN band (5.147 ~ 5.83GHz). Also, the experimental radiation pattern is almost omnidirectional in the H-plane.

Design of a Dual Band High PAE Power Amplifier using Single FET and CRLH-TL (Single FET와 CRLH 전송선을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.56-61
    • /
    • 2010
  • In this paper, high efficient power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult m dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Dual-band characteristics in the output has to balance. Two operating frequencies are chosen at 2.14 GHz and 5.2 GHz in this work. The measured results show that the output power of 28.56 dBm and 29 dBm was obtained at 2.14 GHz and 5.2 GHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 65.824 % and 69.86 % at two operation frequencies, respectively.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Tunable Band-pass Filters using Ba0.5Sr0.5TiO3 Thin Films for Wireless LAN Application (무선랜 대역용 Ba0.5Sr0.5TiO3 박막을 이용한 가변 대역 통과 여파기)

  • Kim, Ki-Byoung;Yun, Tae-Soon;Lee, Jong-Chul;Kim, Il-Doo;Lim, Mi-Hwa;Kim, Ho-Gi;Kim, Jong-Heon;Lee, Byungje;Kim, Na-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.819-826
    • /
    • 2002
  • In this paper, the performance of Au / $Ba_{0.5}Sr_{0.5}TiO_3$ (BST) / Magnesium oxide (MgO) two-layered electrically tunable band-pass Filters (BPFs) is demonstrated. The devices consist of microstrip, coplanar waveguide (CPW), and conductor-backed coplanar waveguide (CBCPW) structures. These BST thin film band-pass filters have been designed by the 2.5 D field simulator, IE3D, Zeland Inc., and fabricated by thin film process. The simulation results, using the 2-pole microstrip, CPW, and CBCPW band-pass filters, show the center frequencies of 5.89 GHz, 5.88 GHz, and 5.69 GHz, and the corresponding insertion losses are 2.67 dB, 1.14 dB, and 1.60 dB, with 3 %, 9 %, and 7 % bandwidth, respectively. The measurement results show the center frequencies of 6.4 GHz, 6.14 GHz, and 6.04 GHz, and their corresponding insertion losses are 6 dB, 4.41 dB, and 5.41 dB, respectively, without any bias voltage. With the bias voltage of 40 V, the center frequencies for the band-pass filters are measured to be 6.61 GHz, 6.31 GHz, and 6.21 GHz, and their insertion losses are observed to be 7.33 dB, 5.83 dB, and 6.83 dB, respectively. From the experiment, the tuning range for the band-pass filters are determined as about 3 % ~ 8 %.

Development of Printed Bow-tie Antenna with 3 ~ 5 GHz Broadband Characteristics for Testing the Electromagnetic Immunity of Automotive Electrical Components in the 5G Frequency Band (5G 주파수 대역의 자동차 전장품 전자기파 내성 평가를 위한 3 ~ 5 GHz 광대역 특성의 인쇄형 bow-tie 안테나 개발)

  • Ko, Ho-jin;Choi, Beom-jin;Park, Ki-hun;Woo, Jong-myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.137-147
    • /
    • 2020
  • This paper proposes printed bow-tie antennas with 3 ~ 5 GHz broadband characteristics were proposed for testing the electromagnetic immunity of automotive electrical components in the 5G frequency band. The antenna get -10 dB bandwidth in the 2.75 ~ 6 GHz frequency band and the broadside radiation pattern with S11 characteristic of -16.2 dB at resonant frequency. In testing electromagnetic immunity in the 5G mobile communication frequency band, the VSWR characteristic remained below 2.1, forming a level of 1 W as proposed by international standards. As a result, it is confirmed that the proposed antenna can be applied to antenna testing for electromagnetic immunity verification in the 5G mobile communication frequency band.

Design of Multi-Layer Dual-Band Bandpass Filter Using Aperture-Coupling (개구 결합을 이용한 적층형 이중 대역 대역 통과 여파기 설계)

  • Shin, Bong-Geol;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2012
  • In this paper, a multi-layer dual-band bandpass filter using aperture-coupling is proposed. Two coupling paths are formed with the two apertures which exist between two dual-mode resonators. The coupling coefficients can be adjusted without changing the shape of resonators. The bandwidth of the second passband can be adjusted without affecting the bandwidth of the first passband using the size of an aperture between stubs of the dual-mode resonator. The aperture coupling mechanism is theoretically analysed. The dual-mode bandpass filter for the 2.4 GHz WLAN, 3.5 GHz WiMax was designed and fabricated. The fabricated filter shows centered 2.45 GHz and 3.5 GHz with 9 % and 8 % of the bandwidth.

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

(The Characteristics Study of Cavity Antenna Sensor for GIS Insulation Diagnosis (GIS 절연진단용 Cavity 안테나 센서의 특성 연구)

  • Lee, Chang-Hun;Lee, Chang-Uk;Choi, Eun-Hyuck;Kim, Jung-Bae;Kim, Gi-Chai;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.424-426
    • /
    • 2007
  • 본 연구에서는 UHF 대역의 측정이 가능한 Cavity 안테나를 이용하여 절연진단기술에서의 적용가능성을 검토해 보았다. 제안된 안테나는 유전체 손실이나 급전라인의 손실이 없는 공기를 매질로 하므로, 고출력에 적합하며 고효율을 가진다. 또한 제작이 용이한 구조를 가지므로 대량 생산 시 많은 장점올 가질 것으로 기대된다. 시뮬레이션을 통하여 Cavity 안테나가 0.3 ${\sim}$ 10[GHz] 대역에서는 -10[dB]이하의 Return loss값을 가지는 측정주파수 대역이 약 2.7 ${\sim}$ 10[GHz]로 나타났으며, 0.3 ${\sim}$ 2.5[GHz]의 대역일 경우는 측정 주파수 대역이 약 0.7 ${\sim}$ 2.5[GHz]으로 나타남으로써 대표적인 전력기기인 GIS(Gas Insulated Switchgear : 가스절연개폐장치)에서 UHF 대역을 이용한 절연진단기술에서 사용하는 주파수 대역에서 사용이 가능함을 확인할 수 있었다.

  • PDF