• Title/Summary/Keyword: 3.0 Tesla

Search Result 125, Processing Time 0.029 seconds

The Prevalence of Cerebral Microbleeds in Non-Demented Parkinson's Disease Patients

  • Kim, Kyeong Joon;Bae, Yun Jung;Kim, Jong-Min;Kim, Beom Joon;Oh, Eung Seok;Yun, Ji Young;Kim, Ji Seon;Kim, Han-Joon
    • Journal of Korean Medical Science
    • /
    • v.33 no.46
    • /
    • pp.289.1-289.10
    • /
    • 2018
  • Background: Cerebral microbleeds (CMBs) are associated with cerebrovascular risk factors and cognitive dysfunction among patients with Parkinson's disease (PD). However, whether CMBs themselves are associated with PD is to be elucidated. Methods: We analyzed the presence of CMBs using 3-Tesla brain magnetic resonance imaging in non-demented patients with PD and in age-, sex-, and hypertension-matched control subjects. PD patients were classified according to their motor subtypes: tremor-dominant, intermediate, and postural instability-gait disturbance (PIGD). Other cerebrovascular risk factors and small vessel disease (SVD) burdens were also evaluated. Results: Two-hundred and five patients with PD and 205 control subjects were included. The prevalence of CMBs was higher in PD patients than in controls (16.1% vs. 8.8%; odds ratio [OR], 2.126; P = 0.019); CMBs in the lobar area showed a significant difference between PD patients and controls (11.7% vs. 5.9%; OR, 2.234; P = 0.032). According to the motor subtype, CMBs in those with PIGD type showed significant difference from controls with respect to the overall brain area (21.1% vs. 8.9%; OR, 2.759; P = 0.010) and lobar area (14.6% vs. 4.9%; OR, 3.336; P = 0.016). Among PD patients, those with CMBs had higher age and more evidence of SVDs than those without CMBs. Conclusion: We found that CMBs are more frequent in PD patients than in controls, especially in those with the PIGD subtype and CMBs on the lobar area. Further study investigating the pathogenetic significance of CMBs is required.

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

Comparison of Computed Diffusion-Weighted Imaging b2000 and Acquired Diffusion-Weighted Imaging b2000 for Detection of Prostate Cancer (전립선암 발견을 위한 계산형 확산강조영상 b2000과 실제 획득한 b2000 영상의 비교)

  • Yeon Jung Kim;Seung Ho Kim;Tae Wook Baek;Hyungin Park;Yun-jung Lim;Hyun Kyung Jung;Joo Yeon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1059-1070
    • /
    • 2022
  • Purpose To compare the sensitivity of tumor detection and inter-observer agreement between acquired diffusion-weighted imaging (aDWI) b2000 and computed DWI (cDWI) b2000 in patients with prostate cancer (PCa). Materials and Methods Eighty-eight patients diagnosed with PCa by radical prostatectomy and having undergone pre-operative 3 Tesla-MRI, including DWI (b, 0, 100, 1000, 2000 s/mm2), were included in the study. cDWI b2000 was obtained from aDWI b0, b100, and b1000. Two independent reviewers performed a review of the aDWI b2000 and cDWI b2000 images in random order at 4-week intervals. A region of interest was drawn for the largest tumor on each dataset, and a Prostate Imaging-Reporting and Data System (PI-RADS) score based on PI-RADS v2.1 was recorded. Histologic topographic maps served as the reference standard. Results The study population's Gleason scores were 6 (n = 16), 7 (n = 53), 8 (n = 9), and 9 (n = 10). According to the reviewers, the sensitivities of cDWI b2000 and aDWI b2000 showed no significant differences (for reviewer 1, both 94% [83/88]; for reviewer 2, both 90% [79/88]; p = 1.000, respectively). The kappa values of cDWI b2000 and aDWI b2000 for the PI-RADS score were 0.422 (95% confidence interval [CI], 0.240-0.603) and 0.495 (95% CI, 0.308-0.683), respectively. Conclusion cDWI b2000 showed comparable sensitivity with aDWI b2000, in addition to sustained moderate inter-observer agreement, in the detection of PCa.

Diagnostic Performance of Diffusion-Weighted Steady-State Free Precession in Differential Diagnosis of Neoplastic and Benign Osteoporotic Vertebral Compression Fractures: Comparison to Diffusion-Weighted Echo-Planar Imaging

  • Shin, Jae Ho;Jeong, Soh Yong;Lim, Jung Hyun;Park, Jeongmi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.154-161
    • /
    • 2017
  • Purpose: To evaluate the diagnostic performance of diffusion-weighted steady-state free precession (DW-SSFP) in comparison to diffusion-weighted echo-planar imaging (DW-EPI) for differentiating the neoplastic and benign osteoporotic vertebral compression fractures. Materials and Methods: The subjects were 40 patients with recent vertebral compression fractures but no history of vertebroplasty, spine operation, or chemotherapy. They had received 3-Tesla (T) spine magnetic resonance imaging (MRI), including both DW-SSFP and DW-EPI sequences. The 40 patients included 20 with neoplastic vertebral fracture and 20 with benign osteoporotic vertebral fracture. In each fracture lesion, we obtained the signal intensity normalized by the signal intensity of normal bone marrow (SI norm) on DW-SSFP and the apparent diffusion coefficient (ADC) on DW-EPI. The correlation between the SI norm and the ADC in each lesion was analyzed using linear regression. The optimal cut-off values for the diagnosis of neoplastic fracture were determined in each sequence using Youden's J statistics and receiver operating characteristic curve analyses. Results: In the neoplastic fracture, the median SI norm on DW-SSFP was higher and the median ADC on DW-EPI was lower than the benign osteoporotic fracture (5.24 vs. 1.30, P = 0.032, and 0.86 vs. 1.48, P = 0.041, respectively). Inverse linear correlations were evident between SI norm and ADC in both neoplastic and benign osteoporotic fractures (r = -0.45 and -0.61, respectively). The optimal cut-off values for diagnosis of neoplastic fracture were SI norm of 3.0 in DW-SSFP with the sensitivity and specificity of 90.4% (95% confidence interval [CI]: 81.0-99.0) and 95.3% (95% CI: 90.0-100.0), respectively, and ADC of 1.3 in DW-EPI with the sensitivity and specificity of 90.5% (95% CI: 80.0-100.0) and 70.4% (95% CI: 60.0-80.0), respectively. Conclusion: In 3-T MRI, DW-SSFP has comparable sensitivity and specificity to DW-EPI in differentiating the neoplastic vertebral fracture from the benign osteoporotic vertebral fracture.

Studies on the Ability to Detect Lesions According to the Changes in the MR Diffusion Weighted Images

  • Kim, Chang-Bok;Cho, Jae-Hwan;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2012
  • This study evaluated the ability of Diffusion-Weight Image (DWI), which is one of pulse sequences used in MRI based on the T2 weighted images, to detect samples placed within phantoms according to their size. Two identically sized phantoms, which could be inserted into the breast coil bilaterally, were prepared. Five samples with different sizes were placed in the phantoms, and the T2 weighted images and DWI were obtained. The Breast 2 channel coil of SIEMENS MAGNETOM Avanto 1.5 Tesla equipment was used for the experiments. 2D T2 weighted images were obtained using the following parameters: TR/TE = 6700/74 msec, Thickness/gap = 5/1 mm, Inversion Time (TI) = 130 ms, and matrix = $224{\times}448$. The parameters of DWI were that TR/TE = 8100/90 msec, Thickness/gap = 5/1 mm, matrix = $128{\times}128$, Inversion Time = 185 ms, and b-value = 0, 100, 300, 600, 1000 s/mm. The ratio of the sample volume on DWI compared to the T2 weighted images, which show excellent ability to detect lesions on MR images, was presented as the mean b-value. The measured b-value of the samples was obtained: 0.5${\times}$0.5 cm=0.33/0.34 square ${\times}$ cm (103%), 1${\times}$1 cm=1.28/1.25 square ${\times}$ cm (102.4%), 1.5${\times}$1.5 cm = 2.28/2.67 square ${\times}$ cm (85.39%), 2${\times}$2 cm=3.56/4.08 square ${\times}$ cm (87.25%), and 2.5${\times}$2.5 cm=7.53/8.77 square ${\times}$ cm (85.86%). In conclusion, the detection ability by the size of a sample was measured to be over 85% compared to T2 weighted image, but the detection ability of DWI was relatively lower than that of T2 weighted image.

Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI (저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법)

  • Kim, Pan-Ki;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Superconducting Properties of in situ Formed Multifilamentary Cu - Nb3Sn Composites and the Effects of Ti Addition on the Superconducting Properties (I) (In situ 법에 의한 Cu-Nb3Sn 복합재료선재의 초전도특성과 이에 미치는 Ti의 영향(I))

  • Park, H.S.;Suh, S.J.;Lee, U.D.;Ahn, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1993
  • The Cu - $Nb_3Sn$ composites wire as a superconducting material was prepared by in situ method as follow: Cu - 15wt.% Nb alloys which were melted in a high -frequency induction furnace and casted in bar were cold-worked up to the final diameter of 0.24 mm, electroplated with Sn, pre-treated in two steps and then diffused at $550{\sim}650^{\circ}C$ for 24 ~ 96 hrs. The overall $J_c$ and $T_c$ of the specimens were measured by the four point-probe method at 10 K in the magnetic field of 0 Tesla. The overall $J_c$ of the composites wire which diffused at $550^{\circ}C$ after pre-treating in two steps were generally higher than those of the wire at either $600^{\circ}C$ or $650^{\circ}C$. For the specimens diffused at $550^{\circ}C$, the overall $J_c$ were increased until 72 hrs. of diffusion time and then decreased. However, in case of diffusion at $600^{\circ}C$ and $650^{\circ}C$, the overall $J_c$ were gradually decreased from the beginning. The maximum overall $J_c$ obtained in this experiment was $1.3{\times}10^4\;A/cm^2$, which was measured for the specimen diffused at $550^{\circ}C$ for 72 hrs. When the specimens were diffused at $550^{\circ}C$ for 72 hrs, after pre-treating, the measured critical temperature, $T_c$ was 16.19 K. Similar $T_c$ value were obtained in other specimens regardless of diffusion time and temperature.

  • PDF

Flip Angle of the Optimal T1 Effect Using FLASH Pulse Sequence at 3T Abdominal MRI (FLASH를 이용한 3T 복부검사에 있어서 최적의 T1효과를 위한 적정 Flip Angle)

  • Han, Jae-Bok;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.101-106
    • /
    • 2009
  • Purpose of this study is to compare the signal intensity (SI) and CNR with T1 weighted image using FLASH at 3T abdominal MRI by varying flip angle (FA). Totally 20 patients (male : 12, female : 8, Age : $28{\sim}63$ years with mean : 51) were examined by 3 Tesla MR scanner (Magnetom Tim Trio, SIEMENS, Germany) with 8 channel body array coil between september and October 2008. Imaging parameters were as follows : FLASH sequence, TR : 120 ms, TE : minimum, FOV (field of view) : $360{\times}300\;mm$, Matrix : $256{\times}224$, slice : 6 mm, scan time : 15 sec and Breath-hold technique. Abdominal image, with a 50 ml syringe filled with water placed in the FOV measuring the water signal, were acquired with varying FA through $10^{\circ}$ to $90^{\circ}$ with $10^{\circ}$ interval. SI's were measured three times at liver parenchyme, water, spleen and background and averaged. The CNR's were measured between the ROIs (region of interest). Statistic analysis was performed with ANOVA test using SPSS software (version 17.0). Less than FA $30^{\circ}$, abdominal images were severely inhomogeneity. Especially, T1 effect of water signal was weak. As the flip angle increased, the signal intensity decreased at all the regions. Especially, flip angle of the highest signal intensity was observed with $40^{\circ}$ at the liver parenchyme, $20^{\circ}$ at water, $30^{\circ}$ at the spleen, respectively. The CNR between liver and water was -60.92 at FA $10^{\circ}$ and 15.16 at FA $80^{\circ}$. The CNR between liver and spleen was -3.18 at FA $10^{\circ}$ and 9.65 at $80^{\circ}$. In conclusion, FA $80^{\circ}$ is optimal for T1 weighted effect using FLASH pulse sequence at 3.0 T abdominal MRI.

  • PDF

Microstructure and Electrical Properties of (YNdSm)-Ba-Cu-O High Tc Composite Superconductors by Zone Melting Process (존멜팅법으로 제조한 (YNdSm)-Ba-Cu-O계 고온복합초전도체의 미세구조 및 전기적 특성)

  • Kim, So-Jung;Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.110-113
    • /
    • 2016
  • (YNdSm)-Ba-Cu-O system high Tc composite superconductors were directionally grown by zone melting process, having large temperature gradient, in air atmosphere. Cylindrical green rods of $(YNdSm)_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(YNS)1.8]composite oxides by CIP (cold isostatic pressing) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The size of nonsuperconducting $(YNdSm)_2BaCuO_5$ inclusions of the melt-textured (YNS)1.8 sample with $CeO_2$ additive were remarkably reduced and uniformly distributed within the superconducting (YNS)1.8 matrix. (YNS)1.8 samples, with / without $CeO_2$ additive, showed an onset $T_c{\geq}90K$ and sharp superconducting transition. The critical current density $J_c$ value of the (YNdSm)1.8 superconductor with $CeO_2$ additive were 840 A, $1.2{\times}104A/cm^2$ in 77 K, 0 Tesla by direct current transport method.