• Title/Summary/Keyword: 3-phase Transformer

Search Result 310, Processing Time 0.022 seconds

Characteristics of Utility Transformer on Household Single-Phase ESS-PCS According to LC Filter Location (주택용 단상 ESS-PCS의 LC 필터위치에 따른 상용변압기의 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • Shortage of electric power occurs frequently along with increased electric power demand. ESS is a precaution to solve this issue. Household ESS has a capacity of approximately 3 kW/7 kWh. Household ESS batteries are typically designed with nominal voltages between 40 and 50 V. To connect household ESS with a 220 V AC system, low battery voltages in power conditioning system (PCS) should be boosted. To boost low battery voltage and match it with AC grid voltage, the use of a transformer for a commercial frequency can be considered. To attenuate switching harmonics of the household single-phase ESS-PCS, LC filter can be installed in two positions: on the primary side or on the secondary side of a transformer. A method has been used generally in single-phase inverters for the ESS-PCS. In another method, however, the output efficiency of the ESS-PCS may be decreased. Parasitic components of the transformer can affect voltage losses, when the square wave with the switching frequency in the ESS-PCS is passed through the transformer windings. In this work, the characteristics of the transformer according to the position of an LC filter are investigated for household single-phase ESS-PCS.

3-phase IHCML inverter using common-arm (공통암 3상 IHMCL 인버터)

  • Song, S.G.;Park, S.J.;Moon, C.J.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.512-514
    • /
    • 2007
  • The number of transformers and the size of transformers in inverter using 3-phase transformer could be reduced compare with a multi-level inverter using single phase transformer. but still the 3-phase transformer inverter needs many switches. In this study, we proposed the isolated multi-level inverter using 3-phase transformers and common arm. Also, the equal-area method is used to calculate conduction angle with switching frequency equal to output fundamental frequency and it can reduce harmonics component of output voltage and switching loss. Finally, We tested multi-level inverter to clarify electric circuit and reasonableness through Matlab simulation and experiment by using prototype inverter.

  • PDF

Test and Analysis of 3-D of Leakage Impedances in a Single-Phase 1MVA HTS Transformer (단상 1MVA 고온초전도 변압기의 누설임피던스 3차원 해석 및 시험)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Lee, Sang-Jin;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-Yop;Song, Hee-Suck;Park, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1003-1005
    • /
    • 2003
  • In this paper, 3-D nonlinear electromagnetic analysis of a single phase 1MVA 22.9 kV/6.6 kV high temperature superconducting(HTS) transformer with double pancake windings was accomplished. The characteristics of 1MVA HTS transformer such as The efficiency, voltage regulation and % impedance voltage drop were obtained by the 3-D non-linear electromagnetic analysis. And in order to verify the 3-D non-linear electromagnetic analysis of a single phase 1MVA HTS transformer, a 1MVA test transformer with windings made of copper tapes with the same size as BSCCO-2223 HTS tape was manufactured. The energy conservation method to perform the analysis of leakage impedances of both a 1MVA HTS transformer and test transformer was used. The characteristic analysis such as efficiency, voltage regulation and % impedance voltage drop of transformer was performed. And the obtained values of both 1MVA HTS transformer and test transformer were compared.

  • PDF

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

Diagnosis of Fault and Abnormal Conditions in a Single-Phase Transformer Using S-parameter Measurement (S파라미터를 이용한 단상 변압기의 이상 상태 진단에 대한 연구)

  • Kim, Jeongeun;Kim, Kwangho;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1344-1352
    • /
    • 2018
  • In this paper, we propose a two-port S-parameter data to diagnose the fault conditions of a single-phase transformer. Using the S-parameters we can measure the reflection and transmission characteristics of signal power at the port of a transformer, which can also be converted into ABCD parameters and Z parameters through a well-known conversion formulas. Transformer fault diagnoses can be performed based on the intuitive and qualitative/quantitative characteristics of the these parameters. In addition, we can obtain wide frequency characteristics at the primary and secondary sides of the transformer, which can be used to get time domain responses using the inverse Fourier transformation with some specific input waveform. In order to verify the effectiveness of the proposed method, the fault conditions were analyzed in simulation and experiment for 3 kVA single phase transformer with 15: 5 turns ratio, and the validity of the proposed method was verified.

Test Results of a Three Phase 10㎸A HTS Transformer With Double Pan Cake Coils (3상 10kVA 더블 팬케익 코일형 고온초전도 변압기 특성시험 결과)

  • 이승욱;이희준;차귀수;이지광;최경달;류경우;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.101-106
    • /
    • 2003
  • The high temperature superconductor transformers gain interests from the industries. This paper described construction and test results of 10㎸A HTS transformer Three phase transformer with double pancake windings were constructed. To reduce the leakage magnetic field, secondary coil were placed between the two primary coils. BSCCO-2223 wire. silicon sheet steel core and FRP cryostats were used to construct the transformer. Three coils were stacked in one cryostat. Two double pancake coils were connected in series for the primary coil and one double pancake coil was used for the secondary coil. Total number of turns of the primary winding and the secondary winding were 112turns and 98urns, respectively, The rated voltages of each winding were 440/220V. The rated currents of each winding were 13.1/26.2A. After the tests of basic properties of the three phase HTS transformer using no-load test, short-circuit test and full-load test, continuous operation of 100 hours with pure resistive load has been carried out. Test results proved over-load capability and reliability of the HTS transformer.

Characteristic Analysis of a Three Phase HTS Transformer (3상 고온초전도 변압기의 특성해석)

  • Lee, S.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.;Choi, K.D.;Ryu, K.W.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.720-722
    • /
    • 2001
  • The high temperature superconductor transformer gains interests from the industries. This paper examined characteristics of the laboratory scale three phase HTS transformer and Brandt equation is used to calculate the loss by perpendicular magnetic field in transformer winding. To estimate the performance of the three phase HTS transformer no load characteristics, short circuit characteristics are calculated by using finite element method. Transient characteristics of sudden short circuit during full load operation have been examined. Effect of the resistance growth in the HTS wire from the quench of the wire is included in the calculation.

  • PDF

Simulation of Three Phase Supercoducting Transformer using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3상 초전도 변압기 시뮬레이션)

  • Lim, Chae-Hyung;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.958-960
    • /
    • 2003
  • Although the researches and developments are performed for superconducting technologies, many problems such as AC loss and quench phenomenon still remain to design the superconducting transformer. In addition, pre-study on the three phase high temperature superconducting (HTS) transformer is a sort of time and expense consuming work, thus it is very worthy of being analyzing the characteristics of HTS transformer in advance through proper simulation programs and skills. This paper presents an effective simulation method for the three phase HTS transformer using components developed in the PSCAD/EMTDC.

  • PDF

Development of EMTDC Model for Electrified Railroad Supply System (전철 급전계통의 EMTDC 모델개발)

  • 윤재영;최흥관;김종율
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.624-629
    • /
    • 2002
  • This paper presents the first Simulation model using EMTDC program to analyze the electrified train voltage distribution characteristics in ac auto-transformer 1110 railroads. In general, all of the electrified train supply system has the characteristics that the train supply line is a naturally non-symmetrical and unbalanced system. Also, it is needed to model the Scott transformer which invert the balanced 3-phase quantity into 2-phase. Therefore, the general simulation methodology using previous simplified equivalent circuit or RMS based program can't obtain the accurate results to reflect the real-time operation because these methodology is basically assumed on completely 3-phase balanced system. To overcome these defects, in this paper, the EMTDC simulation model to analysis the completely electrified railroad system with Scott transformer and AC auto-transformer is presented. Also, the correctness of EMTDC modeling is confirmed by the old basic concepts and we think that this EMTDC model has the future powerful capability for application of railroad system analysis.

Model development of electrified railroad supply system for Electromagnetic Transient Analysis (순시치 해석용 전철급전계통 모델개발)

  • 윤재영;최흥관;김종율;위상봉
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • This paper presents the first simulation model using EMTDC program to analyze the electrified train voltage distribution characteristics in ac auto-transformer fed railroads. In general, all of the electrified train supply system has the characteristics that the train supply line is a naturally non-symmetrical and unbalanced system. Also, it is needed to model the Scott transformer which invert the balanced 3-phase quantity into 2-phase. Therefore, the general simulation methodology using previous simplified equivalent circuit or RMS based program can't obtain the accurate results to reflect the real-time operation because these methodology is basically assumed on completely 3-phase balanced system. To overcome these defects, in this paper, the EMTDC simulation model to analysis the completely electrified railroad system with Scott transformer and AC auto-transformer is presented. Also, the correctness of EMTDC modeling is confirmed by the old basic concepts and we think that this EMTDC model has the future powerful capability for application of railroad system analysis.