• Title/Summary/Keyword: 3-nitrobenzaldehyde

Search Result 9, Processing Time 0.025 seconds

Structures of (4-Nitro-benzylidene)-(3-nitro-phenyl)-amine and trans-Dichlorobis (3-nitroaniline) palladium(II) ((4-Nitro-benzylidene)-(3-nitro-phenyl)-amine 및 trans-Dichlorobis(3-nitroaniline) palladium(II)의 구조)

  • Lee Hee K.;Lee Soon W.
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • A novel potential linking ligand (4-nitro-benzylidene)-(3-nitro-phenyl)-amine (1) was prepared from 4-nitrobenzaldehyde and 3-nitroaniline by the Schiff-base condensation. From the reaction between 1 and dichlorobis(benzonitrile)palladium (II) $(PdCl_2(NCPh)_2)$, an unexpected product $trans-PdCl_2(NO_2-C_6H_4-NH_2)_2$ (2) was isolated. Compounds 1 and 2 were structurally characterized by X-ray diffraction. In compound 2, the $NH_2$ hydrogen atoms in the 3-nitroaniline ligand participate in intermolecular N-H${\cdot}\;{\cdot}\;{\cdot}\;$Cl hydrogen bonds.

Synthesis of Methyl 2, 6-Dimethyl-5-(1', 2'-Dioxo-2'-Ethoxyethyl)-4-(3'-Nitrophenyl)-1, 4 Dihydropyridine -3-Carboxylate

  • Suh, Jung-Jin;Hong, You-Hwa
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.257-260
    • /
    • 1990
  • Hantzch's type reaction of methyl acetopyruvate (2a), methyl 3-aminocrotonate (3) and 3-nitrobenzaldehyde (4) led to dimethyl 3-acetyl-6-methyl-4-(3'-nitrophenyl)-2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-methoxyethyl)-4-(3' nitrophenyl)- 2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'methoxyethyl_4-(3' nitrophenyl)1, 4-dihydropyridine-3-carboxylate (6a) in 26.7 and 9.2% yield, respectively. On the other hand, methyl 2, 60dimethyl-4-(3'-nitrophenyl)-1, 4-dihydropyridine 3-carboxylate (9) was acylated by ethyl oxaly chloride to give methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-ethoxyethyl)-4-(3'-nitrophenyl)-a, 4-dihydropyridine-3-carboxylate (6b) in 76.8% yield.

  • PDF

Synthesis and Biological Evaluation as a Potential Antifungal Allylamine Derivatives (항진균 알릴아민 유도체의 합성과 생물학적 평가)

  • 정병호;정순영
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.254-260
    • /
    • 2004
  • Structure-activity relationship studies of allylamine type of antimycotics were carried out to evaluate the effect of naphthyl and methyl portion of naftifine. Compounds with 2,4-difluorophenyl( 2a-5a), 2,5-difluorophenyl(2b-5b), 4-ethylphenyl(2c-5c), 2-hydroxyphenyl(2d-5d) and 2-methylnaphthyl(2e-5e) instead of naphthyl group with hydrogen(3a-3e), methyl(4a-4e), and ethyl(5a-5e) in the place of methyl in naftifine were synthesized and tested their in vitro anti-fungal activity against five different fungi. Eight compounds( 3a, 4a, 5a, 3d, 4d, 4d, 5d, 3e, and 4e) showed significant anti-fungal activity against T. mentagroPhytes. (E)-N-(3-Phenyl-2-propenyl)-2- hydroxy-benzenemethaneamine( 3d) displayed moderate antifungal activity against all five different fungi.

Synthesis of Schiff-Base Ligands and Determination of Stability Constants of Their Transition Metal(II) Complexes (질소-산소계 시프염기 리간드의 합성과 전이금속(II) 착물의 안정도상수결정)

  • Kim, Seon Deok;Song, Chan Ik;Kim, Jun Gwang;Kim, Jeong Seong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.835-843
    • /
    • 2004
  • N,N-bis(2-salicylaldehyde)dipropylenetriamine(5- Hsaldipn), N,N-bis( 5-bromosalicyl-aldehyde) dipropylenetriamine (5-Brsaldipn), N,N-bis(5-chlorosalicy laldehyde )dipropylene-triamine(5-Clsaldipn), N,N-bis(2-hydroxy- $5-methoxy-benzaldehyde)dipropylenetriamine(5-OCH_3saldipn)$ and N,N-bis (2-hydroxy-5-nitrobenzaldehyde)dipropylenetriamine $(5-NO_2saldipn)$ were synthesized and characterized by elemental analysis, infrared spectrometry, NMR spectrometry and mass spectrometry. Their proton dissociation constants were determined in 70% dioxane/30% water solution by potentiometric. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in dimethyl sulfoxide by a polarographic method. Stability constants for the ligands were in the order of $5-OCH_3$ > 5-H > 5-Br > 5-Cl > $5-NO_2$ saldipn. Enthalpy and entropy changes were obtained in negative values.

Synthesis of Copolyimide Containing 5,15-Bis(mesityl)-10,20-bis(4-amino)porphyrin (5,15-Bis(mesityl)-10,20-bis(4-amino)porphyrin을 포함하는 Copolyimide의 합성)

  • Kim, Hooi-Sung;Lee, Min-Ho;Kim, Chun-Ho;Kim, Mi-Ra;Lee, Jin-Kook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.828-831
    • /
    • 1999
  • 5,15-Bis(mesityl)-10,20-bis(4-amino)porphyrin was synthesized with meso-(mesityl)dipyrromethane and 4-nitrobenzaldehyde. It was characterized with $^1H$-NMR spectroscopy, UV spectrophotometer, and GC-MASS. In UV spectrum, Soret-band(438 nm) and Q-bands(526, 572, 611 nm) were confirmed. In NMR spectrum, the characteristic peak of porphyrin was detected at -2.65 ppm. Copolyimide containing porphyrin structure was synthesized with mesityl-$TPP(NH_2)$, 3,3',4,4'-benzophenonetetracarboxylic dianhydride(BTDA) and 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane(BAPHF) and characterized with UV and FT-IR spectrophotometer. The $T_g$ and $T_m$ of the synthesized copolyimide were 220.7 and $369.2^{\circ}C$, respectively.

  • PDF

Validation of a Rapid Quantitative Method for the Residues of Nitrofuran Metabolites in Loach by Accelerated Solvent Extraction and HPLC Triple Quadrupole Mass Spectrometry

  • Ryu, Eun Chae;Han, Yun-jeong;Park, Seong-soo;Lim, Chul-joo;Choi, Sunok;Park, Se Chang
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.85-93
    • /
    • 2016
  • A rapid method using HPLC-MS/MS has been developed for quantitative determination of the metabolites of nitrofurans, namely 3-amino-2-oxazolidone (AOZ), 5-morpholinomethyl-3-amino-2-oxazolidinone (AMOZ), 1-ammino-hydantoin (AHD) and semicarbazide (SEM) in loach. The extraction procedure was founded on simultaneous acidic hydrolysis and derivatization using 2-nitrobenzaldehyde (2-NBA) for 1 hour at $50^{\circ}C$, followed by purification with liquid-liquid extraction. Recovery was evaluated by spiking standards into blank samples at three levels (0.5, 1.0 and $2.0{\mu}g/kg$), and the mean recovery was 75.1-108.1%. Precision values expressed as the relative standard deviation (%RSD) were ${\leq}8.7%$ and ${\leq}8.5%$ for intra-day and inter-day precision, respectively. Linearity was studied in the range of $0.2-20{\mu}g/Kg$ for NBAOZ, $0.8-20{\mu}g/Kg$ for NBAMOZ, $0.2-20{\mu}g/Kg$ for NBAHD, and $0.1-20{\mu}g/Kg$ for NBSEM, and the obtained coefficient correlations (r) were ${\geq}0.99$ for all compounds. Limits of detection (LODs) for the derivatized nitrofuran metabolites were established at $0.06{\mu}g/Kg$ for NBAOZ, $0.24{\mu}g/Kg$ for NBAMOZ, $0.06{\mu}g/Kg$ for NBAHD, and $0.03{\mu}g/Kg$ for NBSEM. Limits of quantification (LOQs) were established at $0.2{\mu}g/Kg$ for NBAOZ, $0.8{\mu}g/Kg$ for NBAMOZ, $0.2{\mu}g/Kg$ for NBAHD, and $0.1{\mu}g/Kg$ for NBSEM. This simplified rapid method for reducing the derivatization and hydrolysis times can be applied to the determination of nitro-furan residues in loach.

Catalytic Hydrogen Transfer Reduction of Aromatic Nitro Compounds with 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 방향족 니트로 화합물의 환원반응)

  • Kim, Hong-Seok;Kim, Dong Il;Kim, Cheong-Sig;Joo, Young Je
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.871-877
    • /
    • 1994
  • Most of the aromatic nitro compounds were reduced to amines in high yield by transfer of hydrogen from 4-vinyl cyclohexene to the substrate via palladium catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups such as -OH, $-OCH_3$, $-CH_3$, $-CO_2H$, and -Cl, except for halogen which is removed during hydrogenation. The reduction of ortho-substituted nitrobenzene such as o-nitrotoluene, o-nitrophenol, o-nitroanisole was slower than the para isomer. Typically, the nitro compound is refluxed in ethanol with a large exess of 4-vinylcyclohexene in the presence of Pd-C catalyst. Under the above conditions, p-nitrobenzaldehyde, p-nitrobenzyl alcohol, and p-nitrobenzyl acetate were reduced to p-toluidine.

  • PDF

Determination of Semicarbazide in PVC Gaskets of Food Bottle Cap and Foods (식품병마개 PVC gasket과 식품에 함유된 semicarbazide의 분석)

  • Park, Sang-Wook;Lee, Kwang-Ho;Kwak, In-Shin;Jeon, Dae-Hoon;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.334-338
    • /
    • 2005
  • Method was developed to efficiently analyze semicarbazide (SEM) in foods. Although SEM is produced by thermal decomposition of blowing agent azodicarbonamide, it is too small to be activated by ultraviolet light or fluorescence. When 2-nitrobenzaldehyde semicarbazone, derivatization of SEM, was analyzed by HPLC with triple column system, coefficient correlation over 0.9997 and detection limit of 0.48 ng/g were observed. SEM level in commercial bottle cap gasket was 812.20-5771.30ng/g. Recoveries for SEM in food and PVC gasket were 83.45-97.33% and 92.12-98.71%, respectively. SEM level in plastic seals of press twist-off metal lids was ND-5771.330ng/g.

Studies on the Semicarbazone Formation of Mono substituted Benzaldehydes (일치환 Bezaldehyde 의 Semicarbazone 생성 반응에 관한 연구)

  • Kim, Yong-In;Kim, Chang-Mean
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.93-105
    • /
    • 1990
  • Semicarbazone formation of nine monosubstituted benzaldehydes was studied kinetically in 20% methanol buffer solution at 15, 25, 35, and $45^{circ}C$. The rate of p-nitrobenzaldehyde semicarbazone formation is 2.7 times as fast as that of benzaldehyde, while p-hvdroxybenzaldehyde is 3.6 times as slow as that of benzaldehyde. Activation energies for p-chlorobenzaldehyde, benzaldehyde, p-methylbenzaldehyde, p-methoxybenzaldshyde, p-hydroxybenzaldehyde, and p-dimethylaminobenzaldehyde semicarbazone formation are calculated as 5.80, 6.19, 6.57, 7.06, 8.03, and 6.46 kcal/mol respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ions but neutral molecules involving hydrogen bonding between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst, and concerted attack of the necleophilic reagent, free base on carbonyl compound. Also, the effect of solvent composition is small in 20% and 50% methanol (and ethanol) aqueous solutions. The ${\rho}-{\sigma}$ plots for the rates of semicarbazone formation at pH 7.1 show a linear ${\rho}-{\sigma}$ relationship (${\rho}=0.14l$, in contrast to that at pH 2.75 and pH 5.4 corresponding to ${\rho}-{\sigma}$ correlations reparted by Jencks. The rate of semicarbazone formation at pH 5.4 show a relationship which is convex upward, resulting in a break in the curve but at pH 2.75, slight difference from a linear relationship. As a result of studying citric acid catalysis, second-order rate constants increase linearly with citric acid concentration and show a 2 times increase as the catalyst concentration is varied from 0.025 to 0.1 mol/1 at pH 2,9, but slight increase at pH 5.3. The rate-determining step is addition below pH 5 but is dehydration between pH 5 and 7. Conclusively, the rate-determining step of the reaction changes from dehydration to addition in respect to hydrogen ion activity near pH 5. The ortho: para rate ratio of the hydroxybenzaldehydes for semicarbazone formation is about 17 at $15^{\circ}C$. It is concluded that the results constitute strong evidence in favor of greater stabilization of p- than o-hydroxybenzaldehyde by substituent which donate electrons by resonance and is due to hydrogen bonding between the carbon-bound hydrogen of the-CHO group and the oxygen atom of the substituent.