DOI QR코드

DOI QR Code

Validation of a Rapid Quantitative Method for the Residues of Nitrofuran Metabolites in Loach by Accelerated Solvent Extraction and HPLC Triple Quadrupole Mass Spectrometry

  • Ryu, Eun Chae (Gyeongin Regional Food & Drug Administration) ;
  • Han, Yun-jeong (Gyeongin Regional Food & Drug Administration) ;
  • Park, Seong-soo (Gyeongin Regional Food & Drug Administration) ;
  • Lim, Chul-joo (Gyeongin Regional Food & Drug Administration) ;
  • Choi, Sunok (Gyeongin Regional Food & Drug Administration) ;
  • Park, Se Chang (College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2016.02.02
  • Accepted : 2016.03.28
  • Published : 2016.04.30

Abstract

A rapid method using HPLC-MS/MS has been developed for quantitative determination of the metabolites of nitrofurans, namely 3-amino-2-oxazolidone (AOZ), 5-morpholinomethyl-3-amino-2-oxazolidinone (AMOZ), 1-ammino-hydantoin (AHD) and semicarbazide (SEM) in loach. The extraction procedure was founded on simultaneous acidic hydrolysis and derivatization using 2-nitrobenzaldehyde (2-NBA) for 1 hour at $50^{\circ}C$, followed by purification with liquid-liquid extraction. Recovery was evaluated by spiking standards into blank samples at three levels (0.5, 1.0 and $2.0{\mu}g/kg$), and the mean recovery was 75.1-108.1%. Precision values expressed as the relative standard deviation (%RSD) were ${\leq}8.7%$ and ${\leq}8.5%$ for intra-day and inter-day precision, respectively. Linearity was studied in the range of $0.2-20{\mu}g/Kg$ for NBAOZ, $0.8-20{\mu}g/Kg$ for NBAMOZ, $0.2-20{\mu}g/Kg$ for NBAHD, and $0.1-20{\mu}g/Kg$ for NBSEM, and the obtained coefficient correlations (r) were ${\geq}0.99$ for all compounds. Limits of detection (LODs) for the derivatized nitrofuran metabolites were established at $0.06{\mu}g/Kg$ for NBAOZ, $0.24{\mu}g/Kg$ for NBAMOZ, $0.06{\mu}g/Kg$ for NBAHD, and $0.03{\mu}g/Kg$ for NBSEM. Limits of quantification (LOQs) were established at $0.2{\mu}g/Kg$ for NBAOZ, $0.8{\mu}g/Kg$ for NBAMOZ, $0.2{\mu}g/Kg$ for NBAHD, and $0.1{\mu}g/Kg$ for NBSEM. This simplified rapid method for reducing the derivatization and hydrolysis times can be applied to the determination of nitro-furan residues in loach.

미꾸라지에서의 Nitrofuran계 대사물질인3-amino-2-oxazolidone(AOZ), 5-morpholinomethyl-3-amino-2-oxazolidinone(AMOZ), 1-ammino-hydantoin (AHD)와 semicarbazide(SEM)의 잔류량을 검사하기 위해HPLC-MS/MS를 이용한 신속한 정량법이 개발되었다. 2-nitrobenzaldehyde (2-NBA)를 이용해 $50^{\circ}C$에서 1시간 동안 산 가수분해와 유도체화 과정을 거친 뒤에, 액-액 분배로 정제와 추출을 하였다. 회수율은 음성시료에 3가지 농도 0.5, 1.0, $2.0{\mu}g/kg$의 표준액을 첨가하여 평가하였고 평균 회수율은 75.1-108.1% 이었다. 정밀성(%RSD)은 일내 8.7% 이하, 일간 8.5% 이하였다. 직선성은 NBAOZ는 $0.2-20{\mu}g/Kg$, NBAMOZ는 $0.8-20{\mu}g/Kg$, NBAHD는 $0.2-20{\mu}g/Kg$, NBSEM 는 $0.1-20{\mu}g/Kg$ 범위에서 모두 상관계수 0.99이상이었다. 검출한계(LOD)는 NBAOZ $0.06{\mu}g/Kg$, NBAMOZ $0.24{\mu}g/Kg$, NBAHD $0.06{\mu}g/Kg$, NBSEM $0.03{\mu}g/Kg$이었고, 정량한계(LOQ)는 NBAOZ $0.2{\mu}g/Kg$, NBAMOZ $0.8{\mu}g/Kg$, NBAHD $0.2{\mu}g/Kg$, NBSEM $0.1{\mu}g/Kg$ 이었다. 가수분해 및 유도체화 소요시간을 1시간으로 줄여 만든 신속 간편한 이 시험법이 미꾸라지 중 nitrofuran metabolites잔류량 분석에 적합함을 확인할 수 있었다.

Keywords

References

  1. AOAC : Peer-Verified methods program manual on policies and procedures. AOAC international (1998).
  2. Barbosa, J., Freitas, A., Mourao, J.L., Noronha da Silveira, M.I., Ramos, F.: Determination of furaltadone and nifursol residues in poultry eggs by liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Agriculure and Food Chemistry, 60, 4227-4234 (2012). https://doi.org/10.1021/jf205186y
  3. Barua, P.: Nitrofuran: Pull the Trigger to Safeguard the National Interest. Aquanet Magazine, 20-22 (2012).
  4. Blumenstiel, K., Schöneck, R., Yardley, V., Croft, S.L., Krauth-Siegel, R.L.: Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochemical Pharmacology, 58, 1791-1799 (1999). https://doi.org/10.1016/S0006-2952(99)00264-6
  5. Bock, C., Gowik, P., Stachel, C.: Matrix-comprehensive inhouse validation and robustness check of a confirmatory method for the determination of four nitrofuran metabolites in poultry muscle and shrimp by LC-MS/MS. Journal of Chromatography B, 856, 178-189 (2007). https://doi.org/10.1016/j.jchromb.2007.05.044
  6. Conneely, A., Nugent, A., O'Keeffe, M., Mulder, P.P.J., van Rhijn, J.A., Kovacsics, L., Fodor, A., McCracken, R.J., Kennedy, D.G.: Isolation of bound residues of nitrofuran drugs from tissue by solid-phase extraction with determination by liquid chromatography with UV and tandem mass spectrometric detection. Analytica chimica acta, 483, 91-98 (2003). https://doi.org/10.1016/S0003-2670(02)01023-1
  7. Cooper, K., Mulder, P.J., Van Rhijn, J., Kovacsics, L., McCracken, R., Young, P., Kennedy, D.: Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food additives and contaminants, 22, 406-414 (2005). https://doi.org/10.1080/02652030512331385218
  8. Cooper, K.M., Kennedy, D.G.: Nitrofuran antibiotic metabolites detected at parts per million concentrations in retina of pigs-a new matrix for enhanced monitoring of nitrofuran abuse. Analyst, 130, 466-468 (2005). https://doi.org/10.1039/B418374F
  9. Department of Health and Human Services, F.D.A.: Guidelines for Chemical Methods for the FDA Foods Program (2012), Available from: http://www.regulations.gov/content-Streamer?documentId=FDA-2011-D-0490-0040&disposition= attachment&contentType=pdf (accessed April 2015).
  10. Douny, C., Widart, J., De Pauw, E., Silvestre, F., Kestemont, P., Tu, H.T., Phuong, N.T., Maghuin-Rogister, G., Scippo, M.-L.: Development of an analytical method to detect metabolites of nitrofurans: Application to the study of furazolidone elimination in Vietnamese black tiger shrimp (Penaeus monodon). Aquaculture, 376-379, 54-58 (2013). https://doi.org/10.1016/j.aquaculture.2012.11.001
  11. Du, N.N., Chen, M.M., Sheng, L.Q., Chen, S.S., Xu, H.J., Liu, Z.D., Song, C.F., Qiao, R.: Determination of nitrofuran metabolites in shrimp by high performance liquid chromatography with fluorescence detection and liquid chromatography- tandem mass spectrometry using a new derivatization reagent. Journal of chromatography A, 1327, 90-96 (2014). https://doi.org/10.1016/j.chroma.2013.12.065
  12. European Commission : Guidelines for the implementation of decision 2002/657/EC Health and consumer protection directorate-general (2008), Available from: http://ec.europa.eu/food/food/chemicalsafety/residues/cons_2004-2726rev2004_en.pdf (accessed April 2015).
  13. Food and agriculture organization of the United Nations, M.G.B.-R.A.O., J. Richard Arthur FAO Consultant, Rohana P. Subasinghe Senior Aquaculture Officer : Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production (2012). FAO Fisheries and aquaculturre technical paper, Available from: http://www.fao.org/docrep/016/ba0056e/ba0056e.pdf (accessed April 2015).
  14. GÜZel, S., Yibar, A., Okutan, B.: Effects of Boiling on Nitrofuran AOZ Residues in Commercial Eggs. Kafkas Universitesi Veteriner Fakultesi Dergisi (2013).
  15. Jiang, W., Luo, P., Wang, X., Chen, X., Zhao, Y., Shi, W., Wu, X., Wu, Y., Shen, J.: Development of an enzyme-linked immunosorbent assay for the detection of nitrofurantoin metabolite, 1-amino-hydantoin, in animal tissues. Food Control, 23, 20-25 (2012). https://doi.org/10.1016/j.foodcont.2011.05.014
  16. Khong, S.-P., Gremaud, E., Richoz, J., Delatour, T., Guy, P.A., Stadler, R.H., Mottier, P.: Analysis of Matrix-Bound Nitrofuran Residues in Worldwide-Originated Honeys by Isotope Dilution High-Performance Liquid ChromatographyTandem Mass Spectrometry. Journal of agricultural and food chemistry, 52, 5309-5315 (2004). https://doi.org/10.1021/jf0401118
  17. Kim, D., Kim, B., Hyung, S.-W., Lee, C.H., Kim, J.: An optimized method for the accurate determination of nitrofurans in chicken meat using isotope dilution-liquid chromatography/mass spectrometry. Journal of Food Composition and Analysis, 40, 24-31 (2015). https://doi.org/10.1016/j.jfca.2014.12.005
  18. Kruve, A., Rebane, R., Kipper, K., Oldekop, M.-L., Evard, H., Herodes, K., Ravio, P., Leito, I.: Tutorial review on validation of liquid chromatography-mass spectrometry methods: Part I. Analytica chimica acta, 870, 29-44 (2015). https://doi.org/10.1016/j.aca.2015.02.017
  19. Liu, Y., Huang, L., Wang, Y., Yang, B., Ishan, A., Fang, K., Peng, D., Liu, Z., Dai, M., Yuan, Z.: Tissue depletion and concentration correlations between edible tissues and biological fluids of 3-amino-2-oxazolidinone in pigs fed with a furazolidone-medicated feed. Journal of agricultural and food chemistry, 58, 6774-6779 (2010). https://doi.org/10.1021/jf904577f
  20. McCalla, D.R.: Mutagenicity of nitrofuran derivatives: Review. Environmental Mutagenesis, 5, 745-765 (1983). https://doi.org/10.1002/em.2860050512
  21. McNeil, E.M., Ritchie, A.-M., Melton, D.W.: The toxicity of nitrofuran compounds on melanoma and neuroblastoma cells is enhanced by Olaparib and ameliorated by melanin pigment. DNA repair, 12, 1000-1006 (2013). https://doi.org/10.1016/j.dnarep.2013.08.017
  22. Radovnikovic, A., Moloney, M., Byrne, P., Danaher, M.: Detection of banned nitrofuran metabolites in animal plasma samples using UHPLC-MS/MS. Journal of chromatography B, 879, 159-166 (2011). https://doi.org/10.1016/j.jchromb.2010.11.036
  23. Reid, W.M.: History of avian medicine in the United States. X. Control of coccidiosis. Avian Diseases, 509-525 (1990).
  24. Reybroeck, W., Daeseleire, E., De Brabander, H.F., Herman, L.: Antimicrobials in beekeeping. Veterinary microbiology, 158, 1-11 (2012).
  25. Rodziewicz, L.: Determination of nitrofuran metabolites in milk by liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of chromatography B, 864, 156-160 (2008). https://doi.org/10.1016/j.jchromb.2008.01.008
  26. Tao, Y., Chen, D., Wei, H., Yuanhu, P., Liu, Z., Huang, L., Wang, Y., Xie, S., Yuan, Z.: Development of an accelerated solvent extraction, ultrasonic derivatization LC-MS/MS method for the determination of the marker residues of nitrofurans in freshwater fish. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 29, 736-745 (2012). https://doi.org/10.1080/19440049.2011.651629
  27. Valera-Tarifa, N.M., Plaza-Bolaños, P., Romero-González, R., Martínez-Vidal, J.L., Garrido-Frenich, A.: Determination of nitrofuran metabolites in seafood by ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. Journal of Food Composition and Analysis, 30, 86-93 (2013). https://doi.org/10.1016/j.jfca.2013.01.010
  28. Vass, M., Hruska, K., Franek, M.: Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Veterinarni medicina, 53, 469-500 (2008). https://doi.org/10.17221/1979-VETMED
  29. Yu, W.-H., Chin, T.-S., Lai, H.-T.: Detection of nitrofurans and their metabolites in pond water and sediments by liquid chromatography (LC)-photodiode array detection and LCion spray tandem mass spectrometry. International Biodeterioration & Biodegradation, 85, 517-526 (2013). https://doi.org/10.1016/j.ibiod.2013.03.015
  30. Zhou, L., Ishizaki, H., Spitzer, M., Taylor, K.L., Temperley, N.D., Johnson, S.L., Brear, P., Gautier, P., Zeng, Z., Mitchell, A., Narayan, V., McNeil, E.M., Melton, D.W., Smith, T.K., Tyers, M., Westwood, N.J., Patton, E.E.: ALDH2 mediates 5-nitrofuran activity in multiple species. Chemistry & biology, 19, 883-892 (2012). https://doi.org/10.1016/j.chembiol.2012.05.017