• Title/Summary/Keyword: 3-dimensional simulation

Search Result 2,139, Processing Time 0.029 seconds

Three-Dimensional Simulation of a Rotor Pole Forging Process and Verification of the Results (로터 폴 단조 공정의 정밀 삼차원 시뮬레이션 및 결과의 검증)

  • 고병호;이민철;제진수;전만수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.158-162
    • /
    • 2002
  • In this paper, the usefulness of a three-dimensional forging simulation technique is verified through its application to process design in rotor pole forging. A simulator, AFDEX3D developed based on the rigid-plastic finite element method and hexahedral elements, is employed. The simulated results of an application example found in a precision forging company are compared with the actually forged ones in detail. It has been verified that the simulation results are in good agreement with the actual phenomena.

Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program. (삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정)

  • 박기철;한수식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

Two- and Three-dimensional Analysis on the Bubble Flow Characteristics Using CPFD Simulation

  • Lim, Jong Hun;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.698-703
    • /
    • 2017
  • Bubble flow characteristics in fluidized beds were analyzed by CPFD simulation. A fluidized bed, which had the size of $0.3m-ID{\times}2.4m-high$, was modeled by commercial CPFD $Barracuda^{(R)}$. Properties of bed material were $d_p=150{\mu}m$, ${\rho}_p=2,330kg/m^3$, and $U_{mf}=0.02m/s$. Gas was uniformly distributed and the range of superficial gas velocity was 0.07 to 0.16 m/s. Two other geometries were modeled. The first was a three-dimensional model, and the other was a two-dimensional model of $0.01m{\times}0.3m{\times}2.4m$. Bubble size and rising velocity were simulated by axial and radial position according to superficial gas velocity. In the case of three-dimensional model, simulated bubble rising velocity was different from correlations, because there was zigzag motion in bubble flow, and bubble detection was duplicated. To exclude zigzag motion of bubble flow, bubble rising velocity was simulated in the two-dimensional model and compared to the result from three-dimensional model.

The Basic Research of Road Design Simulation Using Digital Aerial Photos (수치항공사진을 이용한 도로설계시뮬레이션의 기초적 연구)

  • Oh, Il-Oh;Kang, Ho-Yun;Choi, Hyun;Kang, In-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • This research is about applying aerial photos to three-dimensional simulation of road design. Instead of existing road design approach using digital map, which inexactly represent some part of topography and landmarks, digital aerial photos are applied to three-dimensional road design to address such inexactness of the map. First of all, ortho-photos are made using aerial photos, and a digital elevation model is created by extracting DEM. Then, by applying the coordinates practically using in planar design to three-dimensional approach, this model will be much helpful in the analyses of road route and viewscape. In addition, through the use of Virtual GIS, many evaluation factors such as urban design, flora, soil, water channel or road shape, flood plan are used for examination, and the effectiveness of applying three-dimensional simulation based on such route design standard is to be reviewed. In this paper, a basic research about three-dimensional design of structures is performed, and through the three-dimensional design, some effective determination to decision-making was carried out. Hereafter, it appears some research regarding environment-friendly construction and design should be followed.

A development of the 3-dimensional stationary drift-diffusion equation solver (3차원 정상상태의 드리프트-확산 방정식의 해석 프로그램 개발)

  • 윤현민;김태한;김대영;김철성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.41-51
    • /
    • 1997
  • The device simulator (BANDIS) which can analyze efficiently the electrical characteristics of the semiconductor devices under the three dimensional stationary conditions on the IBM PC was developed. Poisson, electon and hole continuity equations are discretized y te galerkin method using a tetrahedron as af finite element. The frontal solver which has exquisite data structures and advanced input/output functions is dused for the matrix solver which needs the highest cost in the three dimensional device simulation. The discretization method of the continuity equations used in BANDIS are compared with that of the scharfetter-gummel method used in the commercial three-dimensional device. To verify an accuracy and the efficiency of the discretization method, the simulation results of the PN junction diode and the BJT from BANDIS are compared with those of the commercial three-dimensiional device simulator such as DAVINCI. The maximum relative error within 2% and the average number of iterations needed for the convergence is decreased by more than 20%. The total simulation time of the BJT with 25542 nodes is decreased to about 60% compared with that of DAVINCI.

  • PDF

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

A Study on the 3-Dimensional Simulation System using Industrial Source Complex Model (Industrial Source Complex Model을 이용한 3차원 모사에 관한 연구)

  • Lim Dong Yun;Kim Sung Bin;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.15-19
    • /
    • 2000
  • This study compared and analyzed existing research on dispersion models and selected the EPA's Industrial Source Complex(ISC) model as a model suitable for the domestic petrochemical industry for 3-dimensional simulation and developed a simulation system applying. 3-dimensional algorithm with this ISC dispersion model as a basis As a result of this study, the 3D dispersion model based on ISC can help estimate a exact accident damage zone, make a emergency plan and control a ignition source.

  • PDF

Corrective Surgery Using Virtual Surgical Simulation and a Three-Dimensional Printed Osteotomy Guide: A Case Report (가상 수술 시뮬레이션과 3차원 프린팅 절골술 가이드를 이용한 교정 수술: 증례 보고)

  • Gi Won Choi;Gi Jun Shin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.112-116
    • /
    • 2023
  • A 74-year-old female patient, who underwent surgery for a left distal tibiofibular fracture 40 years earlier, visited the hospital with an ankle varus deformity due to malunion. The patient complained of discomfort while walking due to the ankle and hindfoot varus deformity but did not complain of ankle pain. Therefore, correction using supramalleolar osteotomy was planned, and through virtual surgical simulation, it was predicted that a correction angle of 24° and an osteotomy gap open of 12 mm would be necessary. An osteotomy guide and an osteotomy gap block were made using three-dimensional (3D) printing to perform the osteotomy and correct the deformity according to the predicted goal. One year after surgery, it was observed that the ankle varus was corrected according to the surgical simulation, and the patient was able to walk comfortably. Thus, for correction of deformity, virtual surgical simulation and a 3D-printed osteotomy guide can be used to predict the target value for correction. This is useful for increasing the accuracy of correction of the deformity.

A Study on the Design and Development of Three Dimensional Bending Machine (3차원 Bending Machine 설계 및 개발에 관한 연구)

  • 이춘만;임상헌;김현진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF