• Title/Summary/Keyword: 3-dimensional image restoration

Search Result 33, Processing Time 0.024 seconds

A study on pattern and 3D restoration of Chinese traditional women's robe, straight Ju(直裾深衣) (중국 전통 귀족 여성 예복인 직거심의(直裾深衣)의 패턴 및 3D 복원 연구)

  • Sun Yuan;Jihyeon Kim;Mi-hyang Na
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.107-122
    • /
    • 2023
  • This study analyzed the style, dimensions, fabric patterns, colors, and fabrics of a traditional Chinese women's dress from the Zhou Dynasty, and reconstructed it in the form of a virtual garment using 3D CLO. Based on ancient flat image data and three-dimensional portrait data, who wore them, how they were worn, and how they were coordinated was analyzed. In order to analyze the size and pattern of the straight Ju Chines dress, data from the excavation report and the tomb owner's anthropometric measurements were combined to infer the wearing condition and organize the sculptural features. Dimensional analysis was carried out using a well-preserved small-scale woven cotton cloth as a restoration model, and the horizontal and vertical dimensions were reasonably estimated using the shape proportioning method. The analysis of the colors and patterns of the fabrics was based on the colors and patterns of the fabrics excavated from Masan Tomb No. 1 during the Eastern Zhou, Qin, and Han periods. Finally, a virtual model was created using data from the excavation report and the age and height information of the owner of the excavated robe, and the pose and size of the virtual model were determined using 3D CLO. Based on the previous research data, the garment was virtually sewn and simulated. The shape, pressure, and strain of the garment in different postures was also compared. Through the research direction of pattern and 3D restoration, this research maximizes the restoration of Chinese traditional women's dress and presents it in a more intuitive, comprehensive, and vivid way.

A Study on the Production of 3D Datasets for Stone Pagodas by Period in Korea

  • Byong-Kwon Lee;Eun-Ji Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.105-111
    • /
    • 2023
  • Currently, most of content restoration using artificial intelligence learning is 2D learning. However, 3D form of artificial intelligence learning is in an incomplete state due to the disadvantage of requiring a lot of computation and learning speed from the existing 2 axes (X, Y) to 3 axes (X, Y, Z). The purpose of this paper is to secure a data-set for artificial intelligence learning by analyzing and 3D modeling the stone pagodas of ourinari by era based on the two-dimensional information (image) of cultural assets. In addition, we analyzed the differences and characteristics of towers in each era in Korea, and proposed a feature modeling method suitable for artificial intelligence learning. Restoration of cultural properties relies on a variety of materials, expert techniques and historical archives. By recording and managing the information necessary for the restoration of cultural properties through this study, it is expected that it will be used as an important documentary heritage for restoring and maintaining Korean traditional pagodas in the future.

A Study on Improvement in Digital Image Restoration by a Recursive Vector Processing (순환벡터처리에 의한 디지털 영상복원에 관한 연구)

  • 이대영;이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.105-112
    • /
    • 1983
  • This paper discribes technique of the recursive restoration for the images degraded by linear space invariant blur and additive white Gaussian noise. The image is characterized statistically by tis mean and correlation function. An exponential autocorrelation function has been used to model neighborhood model. The vector model was used because of analytical simplicitly and capability to implement brightness correlation function. Base on the vector model, a two-dimensional discrete stochastic a 12 point neighborhood model for represeting images was developme and used the technique of moving window processing to restore blurred and noisy images without dimensionality increesing, It has been shown a 12 point neighborhood model was found to be more adequate than a 8 point pixel model to obtain optimum pixel estimated. If the image is highly correlated, it is necessary to use a large number of points in the neighborhood in order to have improvements in restoring image. It is believed that these result could be applied to a wide range of image processing problem. Because image processing thchniques normally required a 2-D linear filtering.

  • PDF

A Size Change of Bone Defect Area after Autogenous Calvarial Bone Graft (자가 머리뼈 이식 후 뼈결손부의 면적 변화)

  • Hyun, Kyung Bae;Kim, Dong Suk;Yoo, Sun Kook;Kim, Hee Joung;Kim, Yong Oock;Park, Be-young Yun
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Calvarial bone grafting in craniomaxillofacial trauma and facial reconstructive surgery is now widely recognized and accepted as a standard procedure. One of the commonly reported problems of calvarial bone graft is the contour defect caused by partial resorption of the graft. But, there are few reports that discuss the fate of the calvarial bone graft based on the quantitative data. In this article, the changes of grafted calvarial bone were evaluated using 3-dimensional computed tomography(CT). 9 patients were observed with the CT scans at 2mm thickness immediately after operation and at the time of last follow-up. The area of the bone defect was segmented on the 3-dimensional CT image and calculated by AnalyzeDirect 5.0 software. The immediate postoperative bone defect area of the recipient site and the donor site were $612.9mm^2$ and $441.5mm^2$, respectively, which became $1028.1mm^2$ and $268.8mm^2$, respectively at the last follow-up. In conclusion, the bone defect area was less increased on the donor site of calvarial bone graft than on the recipient site. And the CT scan is a valuable imaging method to assess and follow-up the clinical outcome of calvarial bone grafting.

Three-dimensional Digital Restoration and Surface Depth Modeling for Shape Analysis of Stone Cultural Heritage: Haeundae Stone Inscription (석조문화유산의 형상분석을 위한 3차원 디지털복원과 표면심도 모델링:해운대 석각을 중심으로)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2012
  • This study was focused on digital restoration and surface depth modeling applying the three-dimensional laser scanning system of the Haeundae Stone Inscription. Firstly, the three-dimensional digital restoration carried out acquiring of point cloud using wide range and precision scanner, thereafter registering, merging, filtering, polygon mesh and surveyed map drawing. In particular, stroke of letters, inscribed depth and definition appearing the precision scanning polygon was outstanding compared with ones of the wide range polygon. The surface depth modeling completed through separation from polygon, establishment of datum axis, selection of datum point, contour mapping and polygon merging. Also, relative inscribed depth (5~17mm) and outline by the depth modeling was well-defined compared with photograph and polygon image of the inscription stone. The digital restoration technology merging wide range and precision scanning restored the total and detailed shape of the Stone Inscription quickly and accurately. In addition, the surface depth modeling visibly showed unclear parts from naked eye and photograph. In the future, various deteriorations and surrounding environment change of the Stone Inscription will be numerically analyze by periodic monitoring.

A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code (2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.159-175
    • /
    • 2015
  • The two-dimensional QR code has advantages such as directional nature, enough data storage capacity, ability of error correction, and ability of data restoration. There are two major issues like speed and correctiveness of recognition in the two-dimensional QR code. Therefore, this paper proposes a morphology-based algorithm of detecting the interest region of a barcode. Our research contents can be summarized as follows. First, the interest region of a barcode image was detected by close operations in morphology. Second, after that, the boundary of the barcode are detected by intersecting four cross line outside in a code. Three, the projected image is then rectified into a two-dimensional barcode in a square shape by the reverse-perspective transform. In result, it shows that our detection and recognition rates for the barcode image is also 97.20% and 94.80%, respectively and that outperforms than previous methods in various illumination and distorted image environments.

Automatic Segmentation of Lung, Airway and Pulmonary Vessels using Morphology Information and Advanced Rolling Ball Algorithm (형태학 정보와 개선된 롤링 볼 알고리즘을 이용한 폐, 기관지 및 폐혈관 자동 분할)

  • Cho, Joon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • In this paper, the algorithm that can automatically segment the lung, the airway and the pulmonary vessels in a chest CT was proposed. The proposed method is progressed in three steps. In the first step, the lung and the airway are segmented by the region growing law through the optimal threshold and three-dimensional labeling. In the second, from the start point to the first carina of the airway is segmented by the deduction operation, and the next airway of the bifurcations are segmented by applying a variable threshold technique. In the third step, the left/right lungs are divided by the restoration process for the lung, and the outside of lungs for abnormal is checked by applying the advanced rolling ball algorithm, and if abnormal is found, that part is removed, and it is restored to the normal lungs by connecting the outside of the lung in the form of second-order polynomial. Finally, pulmonary vessels are segmented by applying the three-dimensional connected component labeling method and three-dimensional region growing method. As the results of simulation, it could be confirmed that the pulmonary vascular is accurately divided without loss of tissue around lung.

A Study on the Comparison of Channel Selection and Precision Geometric Correction for Image Restoration of an Submerged Water (수몰 지역의 영상복원을 위한 정밀기하보정 및 채널선정 비교연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • It's a very meaningful experimental study to image restoration of ancient villages vanished at the real life spatial world. Focused on Cheung-Pyung Lake around where most part were flooded by the Chung-Ju large dam founded in early 1980s, we used remote sensing technique in this study in order to restore topographical features before the flood with 3 dimensional effects. It was gathered comparatively good satellite photos and remotely sensed digital images, then its made a new color image from these and the topographical map which had been made before filled water. This task was putting together two kinds of different timed images. And then, we generated DEM(digital elevation model) including the outskirts of that area as harmonizing current contour lines with the map. That could be a perfect 3D image of Cheung-Pyung around before when it had been flood by making perspective images from all directions, north, south, east and west, for showing there in three dimensions. Also, flying simulation we made for close visiting can bring us to experience their real space at that time.

  • PDF

Adaptive Regularized Enhancement of Wavelet Compressed Video (웨이블릿 압축 동영상의 정칙화 기반 적응적 개선에 관한 연구)

  • 정정훈;기현종;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.39-44
    • /
    • 2004
  • The three-dimensional (3D) wavelet transform with motion compensation is suitable for very high quality video coding due to both spatial and temporal decorrelations. However, it still suffers from image degradation such as ringing artifact and afterimage because of the loss of high frequency components by quantization. This paper proposes an iterative regularized enhancement of the motion-compensated 3D wavelet coded video. We also propose the adaptive implementation of the constraints for the regularization. It selectively suppresses the high frequency component along only the corresponding edge direction.

Disassembly and Reconstruction of Stone Pagoda Using 3-Dimensional Image Analysis : Case Study in Simgoksa Seven-storied Stone Pagoda (3차원 영상분석을 활용한 석탑의 해체와 재조립 : 심곡사칠층석탑 사례 연구)

  • Choi, Hee Soo;Lee, Chan Hee;Han, Seong Hee;Lee, Seong Min
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.561-570
    • /
    • 2016
  • This research was a technical case study for the authentic restoration of the seven-storied Simgoksa stone pagoda after disassembly and reconstruction using three-dimensional image analysis. During disassembly and reconstruction, the pagoda's properties were analyzed in terms of the overall modification and displacement of the pagoda. Distortion was minimized by ensuring structural stability during the reconstruction process. Also, the original site of the pagoda was examined in order to utilize it fully during rebuilding. Before reconstruction of the pagoda, moss and lichen on the stone surfaces were removed by scientific surface cleaning. The foundation of the pagoda was reinforced with rammed earth than was similar to the original foundation using a mixture of soil and quicklime. The results are expected to provide valuable data for the reconstruction of other stone pagodas.