• Title/Summary/Keyword: 3-dimensional flow model

Search Result 965, Processing Time 0.027 seconds

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

Viscous Flow Analysis of a Submarine with Variation of Angle of Attack and Yaw Angle (유동 방향 변화에 따른 잠수함 주위의 3차원 점성유동 해석과 공기역학적 계수의 변화)

  • Jang Jin-Ho;Park Warn-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.189-192
    • /
    • 2002
  • In this paper, the submarine model, called DARPA SUBOFF model, has been numerically analyzed to investigate the aerodynamic forces variation in terms of angle of attacks and yaw angles. The SUBOFF model is consisted of the three parts : axisymmetric body, fairwater, and four symmetric stern appendages. Three dimensional unsteady incompressible Wavier-Stokes equation was used on curvilinear multi-block grid system. To validate the present code, the SUBOFF tare hull and an ellipsoid at angle of attacks of $10^{\circ}\;and\;30^{\circ}$ were simulated and a good agreement with experiments was obtained. After the code validation, the flows over SUBOFF model were simulated at three different angle of attacks and yaw angles. The variation of aerodynamic forces in terms of angle of attack and yaw angle were calculated. Also, to understand the flow features around a submarine with variation of yaw and attack angle, the pressure contours and streamlines were plotted.

  • PDF

Numerical Analysis of Heat Flow and Heat Transfer in Flue Channel of Two-Dimensional Ondol Panel Heating System (2차원(次元) 온돌 상난방(床煖房)시스템의 연도내 열유동(熱流動) 및 열전달(熱傳達) 수치해석(數値解析))

  • Kim, Y.D.;Min, M.K.;Lee, S.H.;Kim, W.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.337-343
    • /
    • 1994
  • Numerical analysis was applied to a simplified two-dimensional Ondol heating model which consists of heating space on the top of it along with radiant and convective heating floor panel, flue channel in the midway and rectangular underground soil region at the bottom. These three components constitute a system thermally coupled at the top and bottom interfaces of the flue channel. Investigated in the present paper are effects with variations of the Reynolds numbers of 100, 200, and 300, Grashof numbers of $0.1{\times}10^6$ and $0.3{\times}10^6$ and aspect ratios of 15 and 20 on the heat transfer and fluid flow characteristics of two-dimensional Ondol heating model by computer simulation.

  • PDF

Computational Simulation by One-Dimensional Regeneration Model of Wall-Flow Monolith Diesel Particulate Filter Trap (벽-유동(Wall-Flow) 모노리스(Monolith) 디젤 입자상물질 필터 트랩의 재생모델에 의한 수치 시뮬레이션)

  • Kim, G.H.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.41-54
    • /
    • 1995
  • A mathematical model for wall-flow monolith ceramic diesel particulate filter was developed in order to describe the processes which take place in the filter during regeneration. The major output of the model comprises ceramic wall temperature and regeneration time(soot reduction). Various numerical tests were performed to demonstrate how the gas oxygen concentration, flow rate and the initial particulate trap loading affect the regeneration time and peak trap temperature. The model is shown to b in reasonable agreement with the published experimental results. This model can be applied to predict the thermal shock failure due to high temperature during combustion regeneration process.

  • PDF

Computations of Supersonic Flow with Ristorcelli′s Compressible Turbulence Model (Ristorcelli의 압축성 난류 모형을 이용한 초음속 유동의 계산)

  • Park C. H;Park S. O
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. the endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency The effects of both turbulence model and convective differencing scheme on the Prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence modei on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Aerodynamic Model Development for Three-dimensional Scramjet Model Based on Two-dimensional CFD Analysis (스크램제트 2차원 모델의 전산해석을 이용한 3차원 비행체의 공력 모델 개발)

  • Han, Song Ee;Shin, Ho Cheol;Park, Soo Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.65-76
    • /
    • 2020
  • On the initial design process of a scramjet vehicle such as the trajectory prediction, it is inevitable to estimate the aerodynamic performance of a three-dimensional effect. Despite the necessity of intensive computing for the three-dimensional model, it is inefficient in predicting a wide range of aerodynamic performance. In this study, an engineering model for aerodynamic performance was developed based on two-dimensional computational fluid analysis and linearized supersonic inviscid flow theory. Correspondingly, the three-dimension aerodynamic performance relations are presented based on the two-dimensional results. And the additional three-dimensional computation was performed to evaluate the adequacy for the extended relations.

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.