DOI QR코드

DOI QR Code

Aerodynamic Model Development for Three-dimensional Scramjet Model Based on Two-dimensional CFD Analysis

스크램제트 2차원 모델의 전산해석을 이용한 3차원 비행체의 공력 모델 개발

  • Han, Song Ee (Department of Aerospace Information Engineering, Konkuk University) ;
  • Shin, Ho Cheol (Department of Aerospace Information Engineering, Konkuk University) ;
  • Park, Soo Hyung (Department of Mechanical and Aerospace Engineering, Konkuk University)
  • Received : 2020.05.29
  • Accepted : 2020.07.14
  • Published : 2020.10.31

Abstract

On the initial design process of a scramjet vehicle such as the trajectory prediction, it is inevitable to estimate the aerodynamic performance of a three-dimensional effect. Despite the necessity of intensive computing for the three-dimensional model, it is inefficient in predicting a wide range of aerodynamic performance. In this study, an engineering model for aerodynamic performance was developed based on two-dimensional computational fluid analysis and linearized supersonic inviscid flow theory. Correspondingly, the three-dimension aerodynamic performance relations are presented based on the two-dimensional results. And the additional three-dimensional computation was performed to evaluate the adequacy for the extended relations.

3차원 스크램제트 모델의 설계과정에 있어 3차원 전산해석은 2차원 해석에 비해 상대적으로 복잡한 격자 구성과 많은 해석 시간을 요구한다. 때문에 다양한 조건에서의 3차원 모델의 성능을 확인하는 것은 쉽지 않은 일이다. 따라서 본 연구에서는 2차원 스크램제트 비행체 모델의 전산해석 결과와 비점성 초음속 선형화 이론을 기반으로 2차원 모델의 비행 조건에 따른 공력계수 및 흡입구 질량 포획률 관계식을 도출하였다. 도출된 2차원 성능 관계식과 함께 최소한의 3차원 해석을 수행하여 3차원 스크램제트 모델의 공력 계수와 흡입구 질량 포획률 관계식을 이끌어내었다. 또한 추가적인 3차원 계산을 통해 확장된 3차원 관계식들의 공력 정확도를 검증하였다.

Keywords

Acknowledgement

본 연구는 스크램제트 복합추진시스템 특화연구실 과제(과제코드:16-106-501-035)의 지원을 받아 수행하였으며, 이에 감사드립니다.

References

  1. Murthy, S.N.B. and Curran, E.T., Scramjet propulsion, American Institute of Aeronautics and Astronautics, Reston, Virginia, U.S.A., 2001.
  2. Curran, E.T., "Scramjet engines: the first forty years," Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1138-1148, 2001. https://doi.org/10.2514/2.5875
  3. Engelund, W.C., Holland, S.D., Cockrell, Jr C.E. and Bittner, R.D., "Aerodynamic database development for the hyper-X airframe-integrated scramjet propulsion experiments," Journal of Spacecraft and Rockets, Vol. 38, No. 6, pp. 803-810, 2001. https://doi.org/10.2514/2.3768
  4. Buning, P.G., Wong, T.C., Dilley, A.D. and Pao, J.L., "Computational fluid dynamics prediction of hyper-x stage separation aerodynamics," Journal of Spacecraft and Rockets, Vol. 38, No. 6, pp. 820-827, 2001. https://doi.org/10.2514/2.3771
  5. Won S.H., Jeong, I.S. and Kim, J.S., "Overview on hypersonic scramjet engine developments," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 1, pp. 67-83, 2005.
  6. Lee, K.J, Kang, S.H., Yang, S.S. and Park, C., "Conceptual design study of two-stage hypersonic scramjet vehicle," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 1, pp. 16-24, 2012. https://doi.org/10.6108/KSPE.2012.16.1.016
  7. Ha, J.H., Das, R., Ladeinde, F., Kim, T.H. and Kim H.D., "Numerical study on mode transition in a scramjet engine," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 6, pp. 21-31, 2017.
  8. Park, S.H. and Kwon, J.H., "Implementation of k-ω turbulence models in an implicit multigrid method," AIAA journal, Vol. 42, No. 7, pp. 1348-1357, 2004. https://doi.org/10.2514/1.2461
  9. Roe, P.L., "Approximate Riemann solvers, parameter vectors, and difference schemes," Journal of computational physics, Vol. 43, No. 2, pp. 357-372, 1981. https://doi.org/10.1016/0021-9991(81)90128-5
  10. Liou, M.S., "A sequel to AUSM: AUSM+," Journal of computational physics, Vol. 129, No. 2, pp. 364-382, 1996. https://doi.org/10.1006/jcph.1996.0256
  11. Kim, K.H., Kim, C. and Rho, O.H., "Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme," Journal of Computational Physics, Vol. 174, No. 1, pp. 38-80, 2001. https://doi.org/10.1006/jcph.2001.6873
  12. Sung, C.H., Park, S.H. and Kwon, J.H., "Multigrid Diagonalized-ADI method for compressible flows," 15th AIAA Computational Fluid Dynamics Conference, pp. 2556, 2001.
  13. Tan, H.J., Sun, S. and Yin, Z.L., "Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking," Journal of Propulsion and Power, Vol. 25, No. 1, pp. 138-147, 2009. https://doi.org/10.2514/1.37914
  14. Anderson, J.D., Fundamentals of aerodynamics, 5th ed., McGraw-Hill Education, New York, N.Y., U.S.A., 2010.
  15. Bailey, A.B., and Hiatt, J., "Sphere drag coefficients for a broad range of Mach and Reynolds numbers," AiAA Journal, Vol. 10, No. 11, pp. 1436-1440, 1972. https://doi.org/10.2514/3.50387