• Title/Summary/Keyword: Hypersonic Vehicle

Search Result 61, Processing Time 0.026 seconds

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Aerodynamics Characteristics of Hypersonic Vehicle in Near Space

  • Wu, Dingyi;Liu, Zhenxia;Xiao, Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.503-505
    • /
    • 2008
  • The purpose of the current study is to examine the aerodynamic characteristics of two hypersonic vehicles in near space. One is derived from waverider shape, and the other from liftbody. The objective of this study are threefold. The first is to creat an computational database for hypersonic vehicle configurations. The second is to examine the effects of individual vehicle components on hypersonic configurations and to determine the differences in aerodynamic characteristics that result from integrating all vehicle components. The third objective is to evaluate the controllability of each of the fully integrated vehicles and the effectiveness of the control surface design. These objectives were accomplished using DSMC solutions and aerodynamic code developed in Northwestern Polytechnical University. The results are analyzed also in three sections. First, the results of the waverider shape and liftbody shape without integrated vehicle components are presented. Second, the results of adding aircraft components to the waverider shape and liftbody shape are presented. Finally, the aerodynamic characteristics of the fully integrated waverider-derived configuration and liftbody-derived configuration are examined and compared with those of the pure waverider shape and liftbody shape. Comparation between fully integrated waverider-derived configuration and liftbody-derived configuration are also presented in this paper.

  • PDF

A COMPUTATIONAL STUDY OF ESTIMATING AERO-OPTIC BORESIGHT ERROR FOR A HYPERSONIC FLIGHT VEHICLE (극초음속 비행체의 공기광학 조준오차 예측을 위한 전산해석 연구)

  • Lim, Seol;Chae, Hoon;Kim, Jongju
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • Aero-optic phenomena cause the image position displacement on an imaging plane of the airborne optical/IR systems. Particularly, the aero-optic boresight error(BSE) is important factor for homing, positioning and aiming applications of hypersonic flight interceptor missile. In this paper, an estimating method of aero-optic BSE for a hypersonic flight vehicle is studied. A ray tracing method and a transform method of refractive index fields from flow density fields are combined with computational fluid dynamics(CFD) method.

Research and Development Trends of a Hypersonic Glide Vehicle (HGV) (극초음속 활공 비행체(HGV)의 연구개발 동향)

  • Hwang, Ki-Young;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.731-743
    • /
    • 2020
  • The hypersonic glide vehicle ascends to a high altitude by a rocket booster, separates it from the booster, and glides at a hypersonic speed of Mach 5 or higher at an altitude of about 30~70 km, changing its direction in the atmosphere. Since it moves on an unpredictable flight path rather than a parabolic trajectory, it is difficult to intercept with current missile defense systems. The U.S. conducted HTV-2 and AHW flight tests in the early 2010s to confirm the possibility of hypersonic gliding flights, and recently it has been developing hypersonic glide vehicle systems such as LRHW and ARRW. China has conducted several flight tests of the DF-ZF (WU-14) glide vehicle since 2014 and has been operating it with DF-17 missiles. Russia has conducted hypersonic glide vehicle research since the former Soviet Union, but it has repeatedly failed, and recently it has been successfully tested with the Avangard (Yu-71) glide vehicle mounted on the SS-19 ICBM. In this paper, the characteristics, flight test cases, and development trends of hypersonic glide vehicles developed or currently being developed in the United States, China, Russia, Japan, India, and Europe are reviewed and summarized.

Experiment of Hypersonic Waverider Vehicle

  • Lian, Xiaochun;Wu, Dingyi;Xiao, Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.105-108
    • /
    • 2008
  • The purpose of the current study is to examine the aerodynamic characteristics of hypersonic waverider vehicle by simulation and experiment. The simulation was accomplished using NS aerodynamic codes developed in Northwestern Polytechncal University. The objective of experiment are twofold. The first is to examine the accuracy of simulation. The second is to examine the effects of shockwave an d boundary layer interactions on aero dynamic performance hypersonic configurations.

  • PDF

Constant Volume Combustion (CVC)-based Hypersonic Propulsion System Development Program by DARPA (DARPA의 정적연소 (CVC) 기반 극초음속 추진기관 개발 프로그램)

  • Choi, Jeong-Yeol;Noh, Jin-Hyeon;Cho, Deok-Rae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.402-405
    • /
    • 2009
  • Present review introduces the constant volume combustion (CVC)-based hypersonic propulsion system development program recently initiated by DARPA for the hypersonic cruse vehicle (HCV).

  • PDF

A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG (표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계)

  • Lim S.;Seo J. I.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

Assessment of the aerodynamic and aerothermodynamic performance of a high-lift reentry vehicle

  • Pezzella, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.109-124
    • /
    • 2015
  • This paper deals with the aerodynamic and aerothermodynamic trade-off analysis of a hypersonic flying test bed. Such vehicle will have to be launched with an expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. A summary review of the aerodynamic characteristics of two flying test bed concepts, compliant with a phase-A design level, has been provided hereinafter. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle (극초음속 비행체의 구조설계를 위한 공력 열하중 요소 개발)

  • Kang, Yeon Cheol;Kim, Gyu Bin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.892-901
    • /
    • 2018
  • An efficient aerodynamic thermal load element is developed to reflect the effect of coupled aero-thermo-elastic behaviors in the early design stage of hypersonic vehicle. To this aim, semi-analytic relationships depending on structural deformation are adopted for pressure and thermal load, and the element is formulated based on the relations. The proposed element is implemented in the form of ABAQUS user subroutine, and coupled finite element analysis is carried out to investigate the aero-thermo-elastic behaviors of control surface of hypersonic vehicle. Through the analysis, usefulness of the proposed aerodynamic thermal load element is identified.

A Study on the Prediction of the Aerodynamic Characteristics of a Launch Vehicle Using CFD (전산유동해석에 의한 발사체 공력 특성 예측에 관한 연구)

  • Kim Younghoon;Ok Honam;Kim Insun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.17-22
    • /
    • 2004
  • A space launch vehicle departs the ground in a low speed, soon reaches a transonic and a supersonic speed, and then flies in a hypersonic speed into the space. Therefore, the design of a launch vehicle should include the prediction of aerodynamic characteristics for all speed regimes, ranging from subsonic to hypersonic speed. Generally, Empirical and analytical methods and wind tunnel tests are used for the prediction of aerodynamic characteristics. This research presents considerable factors for aerodynamic analysis of a launch vehicle using CFD. This investigation was conducted to determine effects of wake over the base section on the aerodynamic characteristics of a launch vehicle and also performed to determine effects of the sting which exist to support wind tunnel test model.

  • PDF