• Title/Summary/Keyword: 3-arch 터널

Search Result 52, Processing Time 0.019 seconds

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

A Study on the Estimation of Stress Relaxed Zone around a Tunnel Periphery for the Design of 2-Arch Tunnel Lining (2-ARCH 터널의 라이닝 설계를 위한 터널굴착주변 응력이완 영역산정에 관한 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.343-352
    • /
    • 2005
  • In this study, the existing methods proposed to estimate the relaxed load due to a tunnel excavation are compared and analyzed. Also a new approach, by which the stress relaxed zone around an excavated tunnel periphery can be systematically estimated, was suggested for the design of 2-arch tunnel lining. To this end, local factors of safety are calculated from the redistributed stresses after the excavation of a tunnel. The height of the relaxed load is inferred based on the assumption that the stress relaxed zone might coincide with the region corresponding to the local safety factor of 2.0 or 3.0. The new approach proposed in this study has the advantage of estimating the height of the relaxed load independent of the shape of a tunnel and the ground conditions, Since the height of the relaxed load is estimated according to the local factor of safety, which is a relatively clear criterion, the designer's subjectivity involved in the design of concrete tunnel lining might be reduced.

  • PDF

A Case Study on the Design and Construction of a 2-arch Tunnel with Varying Section (2-아치 변단면터널의 설계 및 시공사례 연구)

  • Choi, Jae-Jin;Park, Yeon-Jun;Kim, Si-Keun;Park, Jae-Hyun
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.310-320
    • /
    • 2012
  • This paper describes the design and construction of a 2-arch tunnel with varying section. This new design has advantages of 2-arch tunnels, which is rather expensive, but is still economically competitive compared to parallel tunnels. Economic analysis was also conducted. To secure the stability of the varying section tunnel, excavated part was reinforced by tie-bolts and RRS, and 2-arch part was supported by EPS blocks and concrete walls. Stability of the pillar was theoretically analyzed and also examined by numerical simulations for various widths. Displacement monitoring was conducted and results were compared with numerical results. Economic analysis showed reductions in construction cost and period by 11% and 10 months respectively.

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

Seismic analysis and dynamic behavior characterization of rib-reinforced pre-cast tunnels (리브 보강 프리캐스트 터널의 내진 해석 및 동적거동 특성 파악)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.287-301
    • /
    • 2009
  • The novel cut-and-cover tunnel construction method using rib-reinforced pre-cast arch segments has been recently developed and applied for practice to secure a structural stability of high covering and wide width section tunnels. Cut-and-cover tunnels are usually damaged by the seismic behavior of backfill grounds in case of a low covering condition. Seismic analyses are performed in this study to characterize the dynamic behavior of rib-reinforced pre-cast arch cut-and-cover tunnels. Seismic analyzes for 2 lane cast-in-place and rib-reinforced pre-cast arch cut-and-cover tunnels are carried out by using the commercial FDM program (FLAC2D) considering various field conditions such as the covering height embankment slope and excavation slope. It can be concluded that the amplification of seismic wave is reduced due to an increase in the structural stiffness induced by rib-reinforcement. The results show that the rib-reinforced pre-cast arch cut-and-cover tunnels are more effective against the seismic loading, compared to the cast-in-place cut-and-cover tunnels.

A Study on the Prediction of Surface Settlement Applying Umbrella Arch Method to Tunnelling (Umbrella arch 공법의 적용에 따른 횡방향 지표침하량 예측에 관한 연구)

  • 김선홍;문현구
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • Recently, Umbrella Arch Method(UAM) is commonly used in order to enhance the stability of tunnel itself and stabilize the adjacent surface structure. But quantitative estimation of reinforcement effect is needed because UAM is designed and constructed only on the basis of empirical experience. By using 3-dimensional finite element method, parametric study is performed for elastic modulus of ground and overburden, and reinforcement effect is analyzed quantitatively. From the results, surface settlement decreases about 9%∼27% in soil tunnel, about 4%∼24% in weathered rock tunnel and 4%∼17% in soft rock tunnel when applied with UAM. The prediction equation for final surface settlement is suggested through regression analysis and the equation is expressed as exponential function which has variable Smax, unknown coefficient i and k.

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF