• Title/Summary/Keyword: 3-Point Bending Test

Search Result 370, Processing Time 0.027 seconds

Enhanced $Al_2O_3/Ti$ Interfacial Properties Using $NbC_x-C_{1-x}/Y_2O_3$ Interlayers-(2) Determination of the Interfacial Properties ($NbC_x-C_{1-x}/Y_2O_3$ 박막코팅을 이용한 $Al_2O_3/Ti$ 계면특성향상 -(2) 계면특성평가)

  • 문철희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.921-926
    • /
    • 1997
  • Two NbCx-C1-x/Y2O3/Ti sputter-coated Al2O3 substrates (L 5.5 cm$\times$W 0.5 cm) were diffusion bonded together using hot press method at 95$0^{\circ}C$ for 3 hours under 1 MPa of applied pressure. 4 points bending tests were used to evaluate the mechanical performance of these precracked laminate beams. Two types of mechanical responses were observed: crack penetration through the interface for x=0.75, 1 and crack deflection into an interface for x=0.25, 0.5. The Al2O3/NbCx-C1-x/Y2O3/Ti system suggested here has been proves to be effective for the thermokinetical stability and tailorability of the interfaces of Al2O3/Ti composites at 95$0^{\circ}C$.

  • PDF

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Effect of Titanium Surface Treatments Bond Strength and Cytotoxicity in Titanium-Porcelain System

  • Chung, In-Sung;Kim, Chi-Young;Choi, Sung-Min
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.105-113
    • /
    • 2008
  • The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics and cytotoxicity of specific titanium porcelain bonded to milling titanium and cast titanium. Milling titanium and cast titanium samples were divided into 8 test groups. These groups are as follow: i) sandblasted with particles of different size of $220{\mu}m\;and\;50{\mu}m$, ii) different sequences of sandblasting treatment and etching treatment, iii) etched with different etching solutions, and iv) preheated or not. The surface characteristics of specimens were characterized by the test of mean roughness of surface and SEM. The bond strength of titanium-ceramic systems was measured by using three-point bending test and SEM. The results show that the mean roughness of surface of sample sandblasted with $220{\mu}m$ aluminum oxide increased and bond strength were higher than sample sandblasted with $50{\mu}m$ aluminum oxide. The mean roughness of surface decreased, but the bond strength increased when the samples sandblasted with $220{\mu}m$ aluminum oxide were preheated. The sample sandblasted with $220{\mu}m$ aluminum oxide after oxidized with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF) showed higher bond strength than sample oxidized with 30% $HNO_3$ after sandblasted with $220{\mu}m$ aluminum oxide. Group NaCuNF220SP (milling Ti: 35.3985 MPa, casting Ti: 37.2306 MPa) which was treated with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF), followed by sandblasting with $220{\mu}m$ aluminum oxide and preheating at $750^{\circ}C$ for 1 hour showed the highest bond strength and significant differences (P<0.05). The method for modifying surface of titanium showed excellent stability of cells.

  • PDF

A Study on the Coating Cracking on a Substrate in Bending II : Experiment (굽힘모드하에서의 코팅크랙킹의 분석II: 실험)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.48-57
    • /
    • 2000
  • Fracture analysis of coating cracking on a substrate system described in a companion paper was applied and verified by four-point bending tests. The multiple cracking of coating was predicted using a fracture mechanics approach. The strain energy release rate (G) due to the formation of a new crack in a coating was obtained. A crack density vs. strain data of metallic and polymeric substrate was used to get the in-situ fracture toughness of coating with respect to various baking time and temperature. The $G_c$ was decreased as the baking temperature and time was increased. This paper gave insight about usefulness of four-point bending test for fracture toughness evaluation of coating and it gave a new method for in-situ coating toughness.

  • PDF

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

ACOUSTIC EMISSION CHARACTERISTIC OF THE RAT FEMUR AFTER ADMINISTRATION OF SODIUM FLUORIDE (불소섭취에 따른 백서 대퇴골의 파절특성에 관한 Acoustic Emission 연구)

  • Song, Keun-Bae;Lee, Young-Eun;Kim, Hye-Young;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • To understand the micro-mechanical changes and the effects of the fluoride on rat's femur after administration of sodium fluoride, the three-point bending test, acoustic emission analysis during the three-point bending test and scanning electron microscopy were performed. The obtained results were as follows: 1. Bone strength increased in the rats given 1, 5, 10 and 20 ppm of fluoride but, there were no statistical significances (p>0.05). 2. With increasing the concentration of fluoride, most AE events released rapidly just before the maximum load and smaller events were recorded than the control group's. The average of cumulative AE event counts until maximum load of the femur in 20 ppm group were significantly small with respect to the control group's (p<0.05). 3. Fracture surfaces were well coincide with the results of acoustic emission behavior. Analyses of fracture surfaces indicated that, consistent with its the highest load, rat femur in 20 ppm fluoride group displays the roughest surface.

Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis (3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계)

  • Kim, Sun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.166-172
    • /
    • 2019
  • A case study was performed in order to develop well-designed of thin plate door impact beam. The conventional impact beam was consisted of steel-pipe welded two brackets on the both side, which causes low productivity and high cost. In order to overcome those disadvantage, it is necessary to develop a new type of door impact; thin plate impact beam. The thin plate impact beam was not needed a welding procedure, which can lead low cost and high productivity. In order to maximally resist from an external force, the cross-section design should be well designed. 6 different cross-section design were proposed based on engineer's experience. Three point bending test was simulated those 6 different impact beam and compared the reaction forces. Among them, one case was chosen and redesigned for detail design.

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.

An experimental study on the determination of the crack initation load level in rock (암석내 균열성장개시점의 결정을 위한 실험적 연구)

  • Kim, Jaedong
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.43-49
    • /
    • 1989
  • In this study, 3-point bending test for the mode I state and 4-point shear test for the mode II state were adopted to verify the crack initiation load level through comparing the test results of the acoustic emission and the ASTM testing criteria, using Jecheon granite, as the rock sample. The major result obtained in this study is that the crack initiation load levels obtained by using ASTM testing criteria and by measuring acoustic emissions showed analogous, roughly. However in case of demanding high safety, the crack initiation load level needs to be underestimated to the level that the crack begins to deform nonlinearly.

  • PDF

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF