• Title/Summary/Keyword: 3-Point Bending

Search Result 677, Processing Time 0.028 seconds

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Evaluation of Fracture Toughness for Steel Fiber Reinforced High Strength Concrete by Non-linear Fracture Mechanics Parameter(J-integral) (비선형 파괴역학 파라메터(J-적분)에 의한 강섬유보강 고강도콘크리트의 파괴인성 평가)

  • Koo, Bong Kuen;Kim, Tae Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-37
    • /
    • 1993
  • This paper describes the use of the J-integral, a one parameter of the non-linear fracture mechanics(NLFM), as a means to measure toughness of steel fiber reinforced concrete. This parameter can be conveniently evaluated from experimentally determined load-deflection curves from flexural tests when a maximum-load failure criterion is employed. And, for high strength concrete which was reinforced steel fiber, with two different fiber length in the form of notched beams, were tested under 3-point bending, and $J_{IC}$, as well as the linear elastic fracture mechanics(LEFM) parameters $K_{IC}$ and $G_{IC}$ were evaluated. The results suggest that $J_{IC}$ is a promising fracture criterion for all of these. while $K_{IC}$(or $G_{IC}$) almost certainly are not. Also it was found that a fiber addition of less than 0.5% did not improve the fracture toughness of the high strength concrete. However, at more than 1.0% in fiber contents, $J_{IC}$ showed significant increases. reflecting the changed character of the concrete; $K_{IC}$ and $G_{IC}$ did not.

  • PDF

Effects of Wearing between Respirators and Glasses Simultaneously on Physical and Visual Discomforts and Quantitative Fit Factors (안면부 여과식 방진마스크와 안경 동시 착용 시 불편감과 밀착계수 비교)

  • Eoh, Won Souk;Choi, Youngbo;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.52-60
    • /
    • 2018
  • This study compares the differences of the fit factor by the order of wearing preference between Particulate filtering facepiece respirators(PFFR) and glasses when participants wore simultaneously and a survey of physical and visual complaint. Recognition level about fit of respirators was investigated and the educational (before- and after-) effect of the fit factor. When participants wore PFFR and glasses, physical complaints were nose pressure, slipping, nose and ear pressure, ear pressure and rim loosen, the most highly physical complaints were nose pressure. Visual complaints were demister, blurry vision, dizziness, visual field, and lens dirty, the most highly visual complaints were demister. But, there was significant difference in physical complaint such as nose pressure(10.3%), slipping (23.0%), nose and ear pressure(14.3%), and rim loosen(16.2%), visual complaint such as visual field(13.8%) and lens dirty(32.4%). For the recognition of fit of respirators, respirators fitness, leak site, an initial point and an object, faulty factor, recognition level was higher. Fit factor was increased after education of proper wearing of respirator. Change of the fit factor was smaller compared to the normal breathing and after 6 actions in case of after education. Questionnaire consisted of general characteristics and physical/visual complaint, recognition of fit. Complaints were measured after the QNFT with multiple choices. Quantitative fit factor was measured by device and compared the result of (before- and after-) educational effect. Also, we selected to 6 actions (Normal breathing, Deep breathing, Bending over, Turning head side to side, Moving head up and down, Normal breathing) among 8 actions OSHA QNFT (Quantitative Fit testing) protocol to measure the fit factors. The fit factor was higher after the training (p=0.000). Descriptive statistics, paired t-test, and Wilcoxon analysis were performed to describe the result of questionnaire and fit test. (P=0.05) Therefore, it is necessary to investigate the quantitative research such as training program and glasses fitting factor about the wearing of PFFR and glasses simultaneously.

On the dimensional stabilization of woods with treatment of Polyethylene Glycol-400 (폴리에치렌 글리콜-400에 의한 목재(木材)의 칫수안정화(安定化))

  • Cho, Nam-Seok;Jo, Jea-Myeong;Bae, Kyu-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 1975
  • How to stabilize wood against shrinking and swelling in variable atmospheric moisture conditions is important to the wood-using industry and a challenge to research. Polyethylene glycol stabilize wood by bulking the fiber. PEG also serve as a chemical seasoning agent, suppress decay in high concentrations, and have slight effect on physical properties, gluing or finishing. The study designed to determine the effect of PEG-400 on the dimensional stabilization of local hardwoods for wood carvings that could supply a greatly expanding tourist trade and making curved furniture parts, lamp stands and other decorative objects, and possible gunstock. The species examined were 6 species, Seo-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acer mono), Karae-Namoo (Juglans mandshurica), Jolcham-Namoo (Quercusserrata) and Sanbud-Namoo (Prunus sargentii), used as block of 5cm thick radially to the grain, 7cm wide tangentially, and 70cm long parallel to the wood grain. All these test piecies were conditioned above the fiber saturation point before impregnation. The stabilization effects were determined for PEG-400 treated woods in a 50 percent solution for 20 days. The following conclusions were obtained. PEG retentions increased with treating time. It was more effective to treat at 60$^{\circ}C$ than at room temperature. In degree of PEG-400 impregnation on species, Cheungcheung-Namoo havinglow specific gravity had the highest retentions, 68.77% but the lowest, 56.33% was shown in Jolcham-Namoo with high specific gravity. Specific gravity of treated wood increased considerably with effectiveness of polymer loading. The increases in specific gravity were 5.36 to 13.16 percent. The highest was Jolcham-Namoo, the lowest Karae-Namoo. On the dimensional stability, a 40 percent of effectiveness of polymer loading was just as effective as 60 percent in reduction in water absorptivity (RWA), antishrinkage efficiency (ASE) and antiswelling efficiency (AE), and from over 60 percent they increased more rapidly. Also species response varied considerably. ASE was 30.12 to 69.97 percent tangentially and 27.86 to 56.37 percent radially, AE 34.06 to 73.76 percent tangentially and 30.11 to 70.12 percent radially, and RWA 42.31 to 65.32 percent. No differences in volume swelling among the 6 species were observed. Its values were ranged from 14.98 to 19.55 percent and also increased with PEG retentions. On the mechanical properties, the strengths very much decreased with PEG-400 loadings as shown in Figure 12; that were 11.41 to 22.90 percent in compression, 21.61 to 34.35 percent in bending and 22.83 to 36.83 percent in tensile strength. PEG retention in cell wall was less than 1 percent and the most of PEG were immersed in cell lumen. Except for Korae-Namoo, effectivenesses of polymer loading were as much high as 61.58 to 75.02 percent. This is believed to be due to the effect of PEG-400 on excellant dimensional stability of treated woods.

  • PDF

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer (후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가)

  • Jeong, Minsu;Lee, Hyeonchul;Bae, Byung-Hyun;Son, Kirak;Kim, Gahui;Lee, Seung-Joon;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.

Failure Behavior of FRP RC Beams without Shear Reinforcements (전단 보강이 없는 FRP RC보의 파괴 거동)

  • Lee, Jae-Hoon;Son, Hyun-A;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

The Effect of Glass Fiber Reinforcing Materials and Thermocycling on the Transverse Strength of Denture Base Resin (유리 섬유 의치상 레진 강화재와 열 순환이 의치상 굽힘 강도에 미치는 영향)

  • Jin, Sung-Eun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.327-336
    • /
    • 2013
  • This study aimed to investigate the reinforcing effect of two kinds of glass fiber, Quarts Splint$^{TM}$ Mesh and SES MESH$^{(R)}$ and to evaluate the effect of the thermocycling on the transverse strength of the denture base and on the reinforcing effect of the reinforcements. 20 specimens of the size of $2.5{\times}10.0{\times}65.0mm$ were fabricated for each group; control group, metal mesh reinforcement group, Quarts Splint$^{TM}$ Mesh reinforcement group and SES MESH$^{(R)}$ reinforcement group. To find the difference made by the thermocycling, 10 specimens of each reinforcement group were treated by thermocycling. 3-point bending test was performed to measure the transverse strength of the denture base resin. The specimens reinforced with SES MESH$^{(R)}$ and Quarts Splint$^{TM}$ Mesh showed significantly higher transverse strength than the control group (P<.05), and significantly lower transverse strength than the specimens reinforced with the metal mesh (P<.05). Thermocycled specimens were lower in transverse strength than non-thermocycled specimens in the control group, metal mesh group, Quarts Splint$^{TM}$ Mesh group and SES MESH$^{(R)}$ group, however significant difference (P<.05) was found only in the control group.