• Title/Summary/Keyword: 3-Mass System

Search Result 2,649, Processing Time 0.03 seconds

Growth Rate of Entomopathogenic Fungi in Mass Culture System (곤충병원성 진균의 대량 배양체계에서의 성장율)

  • 이인기;서종복
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.2
    • /
    • pp.150-153
    • /
    • 1996
  • To develope a microbial pesticide for the control of agricultural and forestal pests in Korea, the mass culture system of entomopathogenic fungi was studied. Previously, we have developed the mass culture system which was adaptable for the culture of Beauveria bassiana. In this study, we determined the efficacy of this mass culture system for other entomopathogenic fungi, B. bassiana, Beauveria brongniartii, Metarhizium anisopliae, and Verticillium lecanni. To determine the efficacy of mass culture system, we examined the growth rate of entomopathogenic fungi in this system which was composed of 1st liquid media for growth of blastospore and 2nd pellet media for growth of conidia. As the result, we obtained that the blastopore numbers increased 103-104 times in liquid media at 72 hrs post inoculation. The results showed that this mass culture system for the growth of entomopathogenic fungi was effective.

  • PDF

Heat/Mass Transfer Characteristics for Variation of Injection Hole in Rotating Impingement/Effusion Cooling System (회전하는 충돌제트/유출냉각기법에서 분사홀 변화에 따른 열/물질전달 특성)

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.25-32
    • /
    • 2007
  • The present paper deals with the heat/mass transfer characteristics for the rotating impingement/effusion cooling system. By changing the size and number of injection hole, its effects on heat/mass transfer are investigated and three different injection hole cases are considered such as LH, DH and SH, respectively. Reynolds number based on the effusion hole diameter is fixed to 3,330 and two jet orientations are considered. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The LH case shows that the local heat/mass transfer is significantly varied by the rotation. Moreover, the low and non-uniform Sh distributions occur because the impinging jet is deflected by Coriolis force. Meanwhile, for DH and SH cases, the local heat/mass transfer coefficients are enhanced significantly compared to LH case and the rotation effect decreases with increasing the jet velocity. The averaged Sh value of DH and SH case rises up to 45%, 85% than that of LH case. However, the uniformity of heat/mass transfer deteriorates due to the steep variation of heat/mass transfer.

Vibration Suppression Control of 3-mass Inertia System by using LMI Theory (LMI 이론에 의한 삼관성 시스템의 진동억제)

  • 최연욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.65-72
    • /
    • 2001
  • Generally, it is said that control of the inertia system is to track the reference input quickly while suppressing the vibration due to the system itself. In this case, the difficulty fur designing a controller is caused by modeling uncertainty and parameter variation. The purpose of this paper is to propose a design method to suppress the vibration of three-mass inertia system based on the LMI theory. That is, the generalized plant model by which we can cope with conservativeness of the existing H$_{*}$ theory is proposed and analyzed in terms of LMI. The results of simulation fur the three-mass inertia system show that the proposed design approach is quite effective under the given situations.

  • PDF

Development of Simulator for High-Speed Elevator System (고속 엘리베이터 시스템용 시뮬레이터 개발)

  • Ryu, Hyeong-Min;Kim, Seong-Jun;Seol, Seung-Gi;Gwon, Tae-Seok;Kim, Gi-Su;Sim, Yeong-Seok;Seok, Gi-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • This Paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system. In order to implement the equivalent inertia of entire elevator system the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to est another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are Presented so hat the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system.

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

Controller Design for Flexible Joint of Industrial Robots: Part 1 - Modeling of the Two-Mass System (산업용 로봇의 유연관절 제어기 설계: Part 1 - 2관성계 모델링)

  • Park Jong-Hyeon;Lee Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.269-276
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents the vibration mechanism of an industrial robot which has flexible joints. The joint flexibility of the robot is modeled as a two-mass system and its dynamic characteristics are analysed. And some characteristics of the two-mass system, especially for the joint of industrial robots, such as disturbance, non-linearity and time-varying characteristics are studied. And finally, some considerations on controller design for the flexible joint of industrial robots are discussed.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

A study on the effects of vertical mass irregularity on seismic performance of tunnel-form structural system

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.131-141
    • /
    • 2019
  • Irregular distribution of mass in elevation is regarded as a structural irregularity by which the modes with high energy levels are excited and in addition, it can lead the structure to withstanding concentration of nonlinear deformations and consequently, suffer from unpredictable local or global damages. Accordingly, with respect to the lack of knowledge and insight towards the performance of concrete buildings making use of tunnel-form structural system in seismic events, it is of utmost significance to assess seismic vulnerability of such structures involved in vertical mass irregularity. To resolve such a crucial drawback, this papers aims to seismically assess vulnerability of RC tunnel-form buildings considering effects of irregular mass distribution. The results indicate that modal responses are not affected by building's height and patterns of mass distribution in elevation. Moreover, there was no considerable effect observed on the performance levels under DBE and MCE hazard scenarios within different patterns of irregular mass distribution. In conclusion, it appears that necessarily of vertical regularity for tunnel-form buildings, is somehow drastic and conservative at least for the buildings and irregularity patterns studied herein.