• Title/Summary/Keyword: 3-Dimensional model test

Search Result 508, Processing Time 0.027 seconds

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

3-Dimensional Precision Measurement of Spacecraft Structure Test Model (위성체 구조시험 모델의 3차원 정밀 측정)

  • 윤용식;이중엽;조창래;이상설
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.131-134
    • /
    • 2001
  • The three-dimensional precision measurement technology for industry product of middle and/or large scale has been developed. Theodolite measurement system which is one of the technology is widely used in aerospace industry. This paper describes measurement method and results for spacecraft structure test model by using the measurement system. And structural stability for STM is desribed through the comparison between design values and measured values.

  • PDF

Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model (3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션)

  • Choi, Y.H.;Lee, J.H.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

Seismic Response Characteristics of the Main Building of Bongjeong Temple (봉정사 대응전의 지진응답 특성)

  • Joo, Seok-Jun;Hong, Sung-Gul;Kim, Nam-Hee;Lee, Young-Wook;Jeong, Seong-Jin;Hwang, Jong-Kook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.235-240
    • /
    • 2007
  • For the identification of the 3 dimensional dynamic characteristics of the Bongjeong Temple, the dynamic test for 1/3 scaled model was performed. Dynamic test with impulse excitation and vibration table excitation can provide useful data for the estimation of dynamic characteristics such as natural frequencies, damping ratios, mode shapes and stiffness center. This will complement the previous research from the 2-dimensional static test and provide the reference data for the enhanced structural analysis of the traditional wooden structures.

  • PDF

An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application

  • Li, Liang;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • This study focuses on an improved prediction model to determine the limiting grouting pressure of compaction grouting considering the ground surface upheaval, which is caused by the three-dimensional conical shearing failure. The 2D-dimensional failure curve in Zou and Xia (2016) was improved to a three-dimensional conical shearing failure for compaction grouting through coordinate rotation. The process of compaction grouting was considered as the cavity expansion in infinite Mohr-Coulomb (M-C) soil mass. The prediction model of limiting grouting pressure of compaction grouting was proposed with limit equilibrium principle, which was validated by comparing the results in El-Kelesh et al. (2001) and numerical method. Furthermore, using the proposed prediction model, the vertical and horizontal grouting tube techniques were adopted to deal with the subgrade settlement in Shao-huai highway at Hunan Provence of China. The engineering applicability and effectiveness of the proposed model were verified by the field test. The research on the prediction model for the limiting grouting pressure of compaction grouting provides practical example to the rapid treatment technology of subgrade settlement.

Formulation of Dynamic Cyclic Plasticity Model for SM490 and Its Application to 3-Dimensional Elastic-Plastic Finite Element Analysis (SM490강재의 동적반복소성모델의 정식화 및 3차원 탄소성 유한요소해석의 적용)

  • Chang, Kyong Ho;Jang, Gab Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.465-471
    • /
    • 2006
  • To describe hysteretic behavior of steel structures under dynamic loading such as earthquake, the dynamic cyclic plasticity model considering stress-strain relationship and characteristics of used steel materials under static-dynamic deforming is required. In this paper, mechanical characteristics and stress-strain relationship of SM490 was clarified by carrying out static-dynamic monotonic and cyclic loading test. A dynamic cyclic plasticity model of SM490 was proposed based on the test results and applied 3-dimensional finite element analysis using finite deformation theory. An analytical method developed by the authors was verified validity and accuracy by comparing both analysis and test results. The comparison result shows that the analytical method developed by the authors can predict static-dynamic hysteretic behavior of steel structures with accuracy.

Study on the Computational Simulation of Large Scale Gap Test (Large Scale Gap 시험의 전산모사연구)

  • Lee, Jin-Sung;Park, Jung-Su;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Comparison of the accuracy of intraoral scanner by three-dimensional analysis in single and 3-unit bridge abutment model: In vitro study (단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교)

  • Huang, Mei-Yang;Son, Keunbada;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.102-109
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the accuracy of three types of intraoral scanners and the accuracy of the single abutment and bridge abutment model. Materials and methods: In this study, a single abutment, and a bridge abutment with missing first molar was fabricated and set as the reference model. The reference model was scanned with an industrial three-dimensional scanner and set as reference scan data. The reference model was scanned five times using the three intraoral scanners (CS3600, CS3500, and EZIS PO). This was set as the evaluation scan data. In the three-dimensional analysis (Geomagic control X), the divided abutment region was selected and analyzed to verify the scan accuracy of the abutment. Statistical analysis was performed using SPSS software (${\alpha}=.05$). The accuracy of intraoral scanners was compared using the Kruskal-Wallis test and post-test was performed using the Pairwise test. The accuracy difference between the single abutment model and the bridge abutment model was analyzed by the Mann-Whitney U test. Results: The accuracy according to the intraoral scanner was significantly different (P < .05). The trueness of the single abutment model and the bridge abutment model showed a statistically significant difference and showed better trueness in the single abutment (P < .05). There was no significant difference in the precision (P = .616). Conclusion: As a result of comparing the accuracy of single and bridge abutments, the error of abutment scan increased with increasing scan area, and the accuracy of bridge abutment model was clinically acceptable in three types of intraoral scanners.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.