• Title/Summary/Keyword: 3-Dimensional Viscous Flow

Search Result 116, Processing Time 0.023 seconds

The visual Simulation of Fluid Flow with Free Surface in a Virtual Water Tank (가상수조에서 자유표면을 가진 유체흐름의 가시화시뮤레이션)

  • 김남형;김남국
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2000
  • SMAC method is, one of the numerical simulation techniques, modified from the original MAC for the time-dependent variation of fluid flows. The Navier-Stokes equation for incompressible time-dependent viscous flow is applied and, also marker particles which move with the fluid are used. Two-dimensional numerical computations of fluid flow are carried out in a virtual water tank. This paper has shown very well the movements of marker particles using SMAC method.

  • PDF

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

A study on the deviation angle of the rotating blade row in an axial- flow compressor (軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究)

  • 조강래;방영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1407-1414
    • /
    • 1988
  • Deviation angles are predicted by numerical calculation of three-dimensional compressible flow through the rotating blade row in axial flow compressor. Three-dimensional flow fields are analyzed by the quasi three-dimensional combination of blade-to blade surfaces and hub-to shroud stream surfaces and calculated by the finite element method in the cyclic calculation of both stream surfaces. In the blade-to blade calculations the method of boundary stream line correction is used and in the hub-to shroud calculations the loss effects due to viscous flow are included. The computational results are compared with the available experimental one. It is shown that the computational results from blade-to-blade flow calculation are correct for incompressible, compressible low subsonic and high subsonic flow at the inlet, and the loss effects on the deviation angle can be neglected in the range of the subsonic flow less than the critical Mach number for the axisymmetric flow and even for 3-D non-axisymmetric flow with loss. And it is found that the present results are better agreed with the experimental data than Lieblein's one.

Simulation of Viscous Flow around the Moving Underwater Vehicle

  • Kwag, Seung-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.202-206
    • /
    • 2001
  • A three dimensional incompressible Navier-Stokes code based on the third derivative upwind is employed to simulate the flow around the underwater vehicle advancing on the calm water. Computations are carried out in the range of Froude numbers 0.4 to 0.7. The wave resistance, lift, moment and the pressure distribution on the body are calculated. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, computation results are compared with existing experimental results.

  • PDF

Flow Characteristics Around the Oscillating Sphere at High Strouhal Number Using Three-Dimensional Vortex Element Method (3차원 입자와법을 이용한 높은 스트롤수로 진동하는 구에 대한 유동장의 수치해석)

  • Lee, Sang-Hwan;Park, Yun-Sub;Cho, Young-Taek;Ahn, Cheol-O;Seo, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.421-428
    • /
    • 2008
  • In this paper, we investigated the flow of an incompressible viscous fluid past a sphere which is oscillated one-dimensionally over flow regimes including laminar flow at Reynolds number of 100, 200 and Strouhal number of up to 5000. In order to analyze flow and estimate critical Strouhal number, we introduce three-dimensional vortex element method. With this method, separation only appears in decreasing velocity region during the high Strouhal numbers. We find out that vorticity distribution around sphere is proportionl to the Strouhal number. And we can decide that low Strouhal number is below 100, high Strouhal number is above 500 from many results. Thus the critical Strouhal number(St) effected to the flow field is expected to be 100

Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body (3차원 미니밴 형상 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Park Y. J.;Kim J. S.;Hong S. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

A Study Viscous Drag Reduction of Three Dimensional Double Model (3차원 2중 모형의 점성 항력 감소화 연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 1994
  • The practical application of riblet to three dimensional double model, for viscous drag reduction, was studied analytically by intergal solution to three dimensional turbulent boundary layers. The case of a V-groove riblet technique on the shear stress and boundary layer velocities were incooperated in the computation of the flow over a smooth slender ship hull. As the results the possible mechanism of turbulent drag reduction by riblets are then suggested based on detailed studies of near-wall turbulence characteristics. And a turbulent boundary layer calculation scheme based on a momentum integral method was modified for the computer program. An example of the calculation results is presented.

  • PDF

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

A New Pressure-Based Finite Element Method Applicable to Viscous Flows at All Speed Ranges (모든 속도영역의 점성유동에 적용 가능한 새로운 압력기반 유한요소법)

  • Shim Eun-Bo;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • A finite element scheme using the concept of PISO method has been developed to solve the viscous flow problems in all speed range. In this study, new pressure equation is proposed such that both the hyperbolic term related with the density variations and elliptic term reflecting the incompressibility constraint are included. Present method has been applied to incompressible flow in two-dimensional driven cavity(Re=100, 400 and 1,000), and its computed results are compared with other's. Also, Carter plate problem(M=3 and Re=1,000) is computed and the comparison is made with Carter's results. Finally, we simulate a shock-boundary layer interaction problem(M=2 and $Re=2.96{\times}10^5$) to illustrate the shock capturing capability of the present solution algorithm.

  • PDF