• Title/Summary/Keyword: 3-Dimensional Precision Measurement

Search Result 151, Processing Time 0.027 seconds

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

Two-Dimensional Navigation Error for Geometry of Landmark in Line-Of-Sight Measurement Based Vision Navigation System (시선각 측정기반 비전항법시스템에서 랜드마크의 기하학적 배치에 대한 2차원 항법오차)

  • Kim, Young-Sun;Ji, Hyun-Min;Hwang, Dong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.479-484
    • /
    • 2012
  • Geometric effect of landmarks to the navigation error is investigated in the two-dimensional line-of-sight measurement based vision navigation system. DOP is derived between line-of-sight measurement error and navigation solution error. For cases of three landmarks in an area, variations of the DOP were observed through computer simulations. Vision navigation system experiments were performed for the cases. Simulation and experimental results show that navigation solution errors have similar trend to DOP values of the simulation.

Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy (터널링효과를 이용한 초미세 가공표면의 형상측정)

  • Jung, Seung-Bae;Lee, Young-Ho;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

A Study on the Phase Measuring Profilometry with Parallel-optical-axes (평행 광축에서의 위상측정 형상측정법에 관한 연구)

  • 정경민;박윤창;박경근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.210-217
    • /
    • 2000
  • Noncontact measuring methodology of 3-dimensional profile using CCD camera are very attractive because of it's high measuring speed and it's high sensitivity. Especially when projecting a grid pattern over the object, the captured image have 3 dimensional information of the object. Projection moire extract 3-D information with another grid pattern in front of CCD camera. However phase measuring profilometry(PMP) obtain similar results without additional grid pattern. In this paper, the projection moire are compared with the PMP mathematically, and it is shown that PMP can generate moire image with simple mathematical computations. Experimental works are also carried out showing the same results. It is shown that using a single gird pattern, moire image can be obtained directly without any mathematical operation when some conditions are satisfied.

  • PDF

A Study on the Measurement of 3-D object, make use of grid fringe generator (피치가변격자를 이용한 자유곡선 형상측정에 관한 연구)

  • 박윤창;정경민;박경근;장석준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.19-22
    • /
    • 2000
  • Noncontact measuring methodology of 3-dimensional profile using CCD camera are very attractive because of it's high measuring speed and its's high sensitivity. Especially, when projecting a grid pattern over the object the captured image have 3 dimensional information of the object. Projection moire extract 3-D information with another grid pattern in front of CCD camera. However phase measuring profilometry(PMP) obtain similar results without additional grid pattern. In this paper, new method for grid pattern generation system by polygonal mirror and Laser Diode. This system is applied the projection moire and the PMP.

  • PDF

A Study on 3-D Shape Measurement and Application by Using Digital Projection Moire (II) (디지털 영사식 무아레를 이용한 3차원 형상 측정과 응용에 관한 연구(II))

  • Ryu, Weon-Jae;Kang, Young-June;Rho, Hyung-Min;Lee, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.62-67
    • /
    • 2007
  • A simple dimension measuring method for the measurement of human bust has been developed using projection moire. The 3-D data of a human bust was calculated from the 2dimensional image information obtained by the stripe using projection moire. The creation of 3-D geometric shape by digitizing real objects has been widely investigated in reverse engineering(RE). This procedure generally consists of three basic steps: data capture, data alignment and model reconstruction. In order to achieve a complete model, multiple scans must be taken and aligned.

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

The Development of adaptive optical dimension measuring system (적응형 광학 치수 측정 장치 개발)

  • 윤경환;강영준;백성훈;강신재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.690-695
    • /
    • 2004
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3-D data of an object was calculated from the 2dimensional image information obtained by the laser stripe using the laser triangulation. The system can measure the diameter of hole not only in a normal plane but also in an incline plane. We can experiment with magnification that is optimized according to size of object using zoom lens. In this paper, the theoretical formula and calibration of the system were described. The measuring precision of the system was investigated by experiment.

  • PDF

One Idea on a Three Dimensional Measuring System Using Light Intensity Modulation

  • Fujimoto Ikumatsu;Cho In-Ho;Pak Jeong-Hyeon;Pyoun Young-Sik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.130-136
    • /
    • 2005
  • A new optical digitizing system for determining the position of a cursor in three dimensions(3D) and an experimental device for its measurement are presented. A semi-passive system using light intensity modulation, a technology that is well known in radar ranging, is employed in order to overcome precision limitations imposed by background light. This system consists of a charge-coupled device camera placed before a rotating mirror and a light-emitting diode whose intensity is modulated. Using a Fresnel pattern for light modulation, it is verified that a substantial improvement of the signal to noise ratio is realized for the background noise and that a resolution of less than a single pixel can be achieved. This opens the doorway to the realization of high precision 3D digitized measurement. We further propose that a 3D position measurement with a monocular optical system can be realized by a numerical experiment if a linear-period modulated waveform is adopted as the light-modulating one.