• Title/Summary/Keyword: 3-Dimensional Precision Measurement

Search Result 152, Processing Time 0.03 seconds

THREE DIMENSIONAL ANALYSIS OF MAXILLOFACIAL STRUCTURE BY FRONTAL AND LATERAL CEPHALOGRAM (두부 방사선 규격사진을 이용한 악안면 구조의 3차원적 분석법)

  • Kwon, Kui-Young;Lee, Sang-Han;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.174-188
    • /
    • 1999
  • The purpose of this study is to evaluate the precision and accuracy of a three dimensional cephalogram constructed by using the frontal and lateral cephalogram of twelve human dry skulls. After achieving the three dimensional image reconstruction program, we tried to apply this program to two dentofacial deformity patients. 1. Conventional nasion relator in cephalostat was used to reproduce the same head position for the same dry skull. The mean difference of the three dimensional cephalogram for the same dry skull was $0.34{\pm}0.33mm$. Closeness of repeated measures to each skull reveals the precision of this method for the three dimensional cephalogram. 2. Concerning the accuracy, the mean difference between the three dimensional reconstruction data and actual lineal measurements was $1.47{\pm}1.45mm$ and the mean magnification ratio was $100.24{\pm}4.68%$. This Diffrerence is attributed mainly to the ill defined cephalometric landmarks, not to the positional change of the dry skull. 3. Cephalometric measurement of lateral and frontal radiographs had no consecutive magnification ratio because of the different focus-object distance. The mean difference between the frontal and lateral cephalogram to the actual lineal measurements was $4.72{\pm}2.01mm$ and $-5.22{\pm}3.36mm$. Vertical measurements were slightly more accurate than horizontal measurements. 4. Applying to the actual patient analysis, it is recommendable to use this program for analyzing the asymmetry or spatial change after operation. The orthodontic bracket would be a favorable cephalometric landmark for constructing the three dimensional images.

  • PDF

Influence of Band and Loop Type Space Maintainer on Intraoral Scanning Accuracy of an Adjacent Tooth

  • Ju Ri Ye;Yong Kwon Chae;Ko Eun Lee;Hyo-Seol Lee;Sung Chul Choi;Ok Hyung Nam
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate whether the presence of a space maintainer affects the accuracy of an intraoral scanner. Materials and Methods: The maxillary primary first molar typodont tooth was removed from the primary dentition typodont model and a band and loop type space maintainer was delivered. After the model was connected to a dental phantom, intraoral scan was performed using TRIOS 4 (3Shape A/S, Copenhagen, Denmark). The scan was repeated with the same technique without the space maintainer. Each scan was performed 10 times. All scan files into a GOM inspect 2018 software and evaluated the accuracy. The accuracy was evaluated on trueness and precision, and calculated using the root mean square value. Result: When there was a space maintainer in the oral cavity, the trueness value was 0.10±0.02 mm and the precision value was 0.15±0.03 mm. In the absence of the space maintainer, the trueness value was 0.12±0.03 mm and the precision value was 0.16±0.04 mm. There were no significant differences depending on the presence of a space maintainer (P>0.05). Conclusion: Within the limits of this study, the accuracy of the intraoral scanner was not influenced by the presence of space maintainer.

Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data (점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출)

  • Han, Jehee;Jang, Minseo;Han, Hyungseo;Jo, Hyoungjun;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

Application on the New Technology of Construction Structures Disaster Protection Management based on Spatial Information

  • Yeon, Sangho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.136-145
    • /
    • 2018
  • The disaster monitoring technique by combination of the measurement method and the fine precision of the sensor collecting the satellite-based information that can determine the displacement space is available in a variety of diagnostic information and the GIS/GNSS by first sensor it is being requested from them. Be large and that the facility is operated nationally distributed torsional displacement of the terrain and facilities caused by such natural disasters progress of various environmental factors and the surroundings. To diagnose this spatial information, which contains the various sensors and instruments tracks the precise fine displacement of the main construction structures and the first reference in the Geospatial or more three-dimensional detailed available map and location information using the installed or the like bridges and tunnels produced to a USN/IoT change at any time, by combining the various positioning analysis of mm-class for the facility main area observed is required to constantly in the real time information of the USN/IoT environment sensor, and to utilize this as a precise fine positioning information by UAV/Drone to the precise fine displacement of the semi-permanent infrastructures. It managed to be efficient management by use of new technologies, analyzing the results presented to a method capable of real-time monitoring for a large structure or facility to construction disaster prevention.

Quantitative Analysis of 3-D Displacements Measurement by Using Holospeckle Interferometry (홀로스펙클 간섭법을 이용한 3차원 변위측정의 정량적 연구)

  • 주진원;권영하;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1208-1217
    • /
    • 1993
  • The simple and effective optical technique synthesizing holographic interferometry and speckle photography is presented. The optical system used in this experiment is based on image holography. A cantilever beam located on the precision translator is used to evaluate this measurement system. Experimental results agree well with the actual displacements within the error of 2.8%. As an its application, three dimensional contact deformation in the ball indentation is measured by using this optical system and compared with the numerical analysis by finite element method.

Proposal of Optimized Neural Network-Based Wireless Sensor Node Location Algorithm (최적화된 신경망 기반 무선 센서 노드위치 알고리즘 제안)

  • Guan, Bo;Qu, Hongxiang;Yang, Fengjian;Li, Hongliang;Yang-Kwon, Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1129-1136
    • /
    • 2022
  • This study leads to the shortcoming that the RSSI distance measurement method is easily affected by the external environment and the position error is large, leading to the problem of optimizing the distance values measured by the RSSI distance measurement nodes in this three-dimensional configuration environment. We proposed the CA-PSO-BP algorithm, which is an improved version of the CA-PSO algorithm. The proposed algorithm allows setting unknown nodes in WSN 3D space. In addition, since CA-PSO was applied to the BP neural network, it was possible to shorten the learning time of the BP network and improve the convergence speed of the algorithm through learning. Through the algorithm proposed in this study, it was proved that the precision of the network location can be increased significantly (15%), and significant results were obtained.

Mapping Precise Two-dimensional Surface Deformation on Kilauea Volcano, Hawaii using ALOS2 PALSAR2 Spotlight SAR Interferometry (ALOS-2 PALSAR-2 Spotlight 영상의 위성레이더 간섭기법을 활용한 킬라우에아 화산의 정밀 2차원 지표변위 매핑)

  • Hong, Seong-Jae;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1235-1249
    • /
    • 2019
  • Kilauea Volcano is one of the most active volcano in the world. In this study, we used the ALOS-2 PALSAR-2 satellite imagery to measure the surface deformation occurring near the summit of the Kilauea volcano from 2015 to 2017. In order to measure two-dimensional surface deformation, interferometric synthetic aperture radar (InSAR) and multiple aperture SAR interferometry (MAI) methods were performed using two interferometric pairs. To improve the precision of 2D measurement, we compared root-mean-squared deviation (RMSD) of the difference of measurement value as we change the effective antenna length and normalized squint value, which are factors that can affect the measurement performance of the MAI method. Through the compare, the values of the factors, which can measure deformation most precisely, were selected. After select optimal values of the factors, the RMSD values of the difference of the MAI measurement were decreased from 4.07 cm to 2.05 cm. In each interferograms, the maximum deformation in line-of-sight direction is -28.6 cm and -27.3 cm, respectively, and the maximum deformation in the along-track direction is 20.2 cm and 20.8 cm, in the opposite direction is -24.9 cm and -24.3 cm, respectively. After stacking the two interferograms, two-dimensional surface deformation mapping was performed, and a maximum surface deformation of approximately 30.4 cm was measured in the northwest direction. In addition, large deformation of more than 20 cm were measured in all directions. The measurement results show that the risk of eruption activity is increasing in Kilauea Volcano. The measurements of the surface deformation of Kilauea volcano from 2015 to 2017 are expected to be helpful for the study of the eruption activity of Kilauea volcano in the future.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

Analysis of Three Dimensional Position According to Photographing Position in Close-Range Digital Photogrammetry (촬영위치에 따른 근접수치사진측량의 3차원 위치 해석)

  • Lee, Jong-Chool;Seo, Dong-Ju;Roh, Tae-Ho;Nam, Shin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.181-186
    • /
    • 2003
  • As the approach close-range digital photogrammetry has a variety of merits, the application of precision requiting fields is in Increase for its scope expansion. In the meantime, in case of photographic surveying by use of films, a lot of studies on experiment analysis and theoretical forecast models about a change of the exactness as per photographing coordinates have been conducted, but experiments about approach close-range digital photogrammetry are not enough yet. In consequence, this study has made photographing respectively by changing the photographic distance, converging angle, picturing direction by use of Rollei d7 metric and d7 metric$\^$5/ that is a measurement digital camera. And also in order to minimize the errors happened at the relative orientation, we have sorted out the prototype target that the relative orientation is automatically on the programming and have calculated RMSE by carrying out the bundle adjustment. We think that such a study could be used as very important basic data necessary in deriving the optimal photographic conditions by the close-range digital photogrammetry and in judging such a degree.

  • PDF

A Study on the Establishment of Geodetic Control Points for GPS (GPS 측지기준점 설정에 관한 연구)

  • 박필호;한인우;김천휘;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • The purpose of this study is to establish the geodetic control points of GPS in Korea and estimate a measurment ability of GPS for the long baseline. For this, we performed the simultaneous GPS observations at two points in Korea and one point in Japan, and analized the precision of GPS survey according to the data process methods. As the results, three dimensional coordinates of two points in Korea are precisely established on basis of WGS 84 coordinate system and it is demonstrated that the measurement ability of GPS is 0.1 ppm for long baseline. We expect that in the future this result will be used as the basic data for securing the geodetic control points of GPS in Korea.

  • PDF