• Title/Summary/Keyword: 3-Dimensional D.P.

Search Result 580, Processing Time 0.021 seconds

Three-dimensional symmetry and parallelism of the skeletal and soft-tissue poria in patients with facial asymmetry

  • Kim, Min-Gun;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.62-68
    • /
    • 2014
  • Objective: The purpose of this study was to examine the symmetry and parallelism of the skeletal and soft-tissue poria by three-dimensional (3D) computed tomographic (CT) imaging. Methods: The locations of the bilateral skeletal and soft-tissue poria in 29 patients with facial asymmetry (asymmetric group) and 29 patients without facial asymmetry (symmetric group) were measured in 3D reconstructed models of CT images by using a 3D coordinate system. The mean intergroup differences in the anteroposterior and vertical angular deviations of the poria and their anteroposterior and vertical parallelism were statistically analyzed. Results: The symmetric and asymmetric groups showed significant anteroposterior angular differences in both the skeletal and the soft-tissue poria (p = 0.007 and 0.037, respectively; Mann-Whitney U-test). No significant differences in the anteroposterior and vertical parallelism of the poria were noted ($p{\leq}0.05$; Wilcoxon signed-rank test). Conclusions: In general, the skeletal poria are parallel to the soft-tissue poria. However, patients with facial asymmetry tend to have asymmetric poria.

Comparison of conventional lateral cephalograms with corresponding CBCT radiographs

  • Park, Chang-Seo;Park, Jae-Kyu;Kim, Huijun;Han, Sang-Sun;Jeong, Ho-Gul;Park, Hyok
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.201-205
    • /
    • 2012
  • Purpose: This study was performed to assess the compatibility of cone beam computed tomography (CBCT) synthesized cephalograms with conventional cephalograms, and to find a method for obtaining normative values for three-dimensional (3D) assessments. Materials and Methods: The sample group consisted of 10 adults with normal occlusion and well-balanced faces. They were imaged using conventional and CBCT cephalograms. The CBCT cephalograms were synthesized from the CBCT data using OnDemand 3D software. Twenty-one angular and 12 linear measurements from each imaging modality were compared and analyzed using paired-t test. Results: The linear measurements between the two imaging modalities were not statistically different (p>0.05) except for the U1 to facial plane distance. The angular measurements between the two imaging modalities were not statistically different (p>0.05) with the exception of the gonial angle, ANB difference, and facial convexity. Conclusion: Two-dimensional cephalometric norms could be readily used for 3D quantitative assessment, if corrected for lateral cephalogram distortion.

2D-QSAR Analyses on the Binding Affinity Constants of Tetrahydropyrane and Tetrahydrofurane Analogues against Bovine Odorant Binding Protein and Predicted of High Active Molecules (Bovine Ordorant Binding Protein에 대한 Tetrahydropyrane 및 Tetrahydrofurane 유도체들의 결합 친화력 상수에 관한 2D-QSAR 분석과 고활성 분자의 예측)

  • Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.119-123
    • /
    • 2009
  • The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.

Assessment of the accuracy of laser-scanned models and 3-dimensional rendered cone-beam computed tomographic images compared to digital caliper measurements on plaster casts

  • Yousefi, Faezeh;Shokri, Abbas;Zahedi, Foozie;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.429-438
    • /
    • 2021
  • Purpose: This study investigated the accuracy of laser-scanned models and 3-dimensional(3D) rendered cone-beam computed tomography (CBCT) compared to the gold standard (plaster casts) for linear measurements on dental arches. Materials and Methods: CBCT scans and plaster models from 30 patients were retrieved. Plaster models were scanned by an Emerald laser scanner (Planmeca, Helsinki, Finland). Sixteen different measurements, encompassing the mesiodistal width of teeth and both arches' length and width, were calculated using various landmarks. Linear measurements were made on laser-scanned models using Autodesk Meshmixer software v. 3.0 (Autodesk, Mill Valley, CA, USA), on 3D-rendered CBCT models using OnDemand 3D v. 1.0 (Cybermed, Seoul, Korea) and on plaster casts by a digital caliper. Descriptive statistics, the paired t-test, and intra- and inter-class correlation coefficients were used to analyze the data. Results: There were statistically significant differences between some measurements on plaster casts and laser-scanned or 3D-rendered CBCT models (P<0.05). Molar mesiodistal width and mandibular anterior arch width deviated significantly different from the gold standard in both methods. The largest mean differences of laser-scanned and 3D-rendered CBCT models compared to the gold standard were 0.12±0.23 mm and 0.42±0.53 mm, respectively. Most of the mean differences were not clinically significant. The intra- and inter-class correlation results were acceptable for all measurements(>0.830) and between observers(>0.801). Conclusion: The 3D-rendered CBCT images and laser-scanned models were useful and accurate alternatives to conventional plaster models. They could be used for clinical purposes in orthodontics and prostheses.

Development of the Three-Dimensional Perfusion Culture Technology for the Salivary Ductal Cells (타액선 도관세포의 관류 배양 기술 개발)

  • Kim, Ji Won;Kim, Jeong Mi;Choi, Jeong-Seok
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2018
  • Background and objectives: Salivary hypofunction is one of the common side effects after radioiodine therapy, and its pathophysiology is salivary ductal stenosis resulting from ductal cell injury. This study aimed to develop the functional culture environment of human parotid gland ductal cells in in vitro three-dimensional perfusion culture system. Materials and Methods: We compared plastic dish culture method and three-dimensional culture system containing Matrigel and nanofiber. Morphogenesis of reconstituted salivary structures was assessed by histomorphometry. Functional characteristics were assessed by immunohistochemistry and reverse transcription polymerase chain reaction (aquaporin 5, CK7, CK18, connexin 43, and p21). In addition, we designed the media perfusion culture system and identified higher rate of cell proliferation and expression of connexin 43 in perfusion system comparing to dish. Results: Human parotid ductal cells were well proliferated with the ductal cell characters under environment with Matrigel. In the presence of Matrigel, aquaporin 5, CK18 and connexin 43 were more expressed than 2D dish and 3D nanofiber setting. In the media perfusion culture system, ductal cells in 3D culture media showed higher cells count and connexin 43 expression compared to 2D dish. Conclusion: This in vitro ductal cell perfusion culture system using Matrigel could be used to study for radioiodine induced sialadenitis model in vivo.

Retrospective analysis of intensity-modulated radiotherapy and three-dimensional conformal radiotherapy of postoperative treatment for biliary tract cancer

  • Lee, Hyo Chun;Lee, Jong Hoon;Lee, Sea-Won;Lee, Joo Hwan;Yu, Mina;Jang, Hong Seok;Kim, Sung Hwan
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: This study was conducted to compare the outcome of three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for the postoperative treatment of biliary tract cancer. Materials and Methods: From February 2008 to June 2016, 57 patients of biliary tract cancer treated with curative surgery followed by postoperative 3D-CRT (n = 27) or IMRT (n = 30) were retrospectively enrolled. Results: Median follow-up time was 23.6 months (range, 5.2 to 97.6 months) for all patients and 38.4 months (range, 27.0 to 89.2 months) for survivors. Two-year recurrence-free survival is higher in IMRT arm than 3D-CRT arm with a marginal significance (25.9% vs. 47.4%; p = 0.088). Locoregional recurrence-free survival (64.3% vs. 81.7%; p = 0.122) and distant metastasis-free survival (40.3% vs. 55.8%; p = 0.234) at two years did not show any statistical difference between two radiation modalities. In the multivariate analysis, extrahepatic cholangiocarcinoma, poorly-differentiated histologic grade, and higher stage were significant poor prognostic factors for survival. Severe treatment-related toxicity was not significantly different between two arms. Conclusions: IMRT showed comparable results with 3D-CRT in terms of recurrence, and survival, and radiotherapy toxicity for the postoperative treatment of biliary tract cancer.

Evaluation of Marginal Gap of Three Unit Metal Cores Fabricated by 3-Dimensional Printing Technique (3차원 프린팅 기술에 의해 제작된 3본 금속 코어의 변연 간격 평가)

  • Kim, Jae-Hong;Kim, Won-Soo;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.196-201
    • /
    • 2015
  • The purpose of this study was to evaluate marginal gap of 3 unit fixed dental prostheses (FDPs) fabricated by 3-dimensional (3D) printing technology and to compare marginal gap of its by a conventional method (lost wax technique and casting method). Ten study models were manufactured. Three unit FDPs were fabricated by 3D printing technique (3D group) and conventional methods (CV group). Marginal gaps were measured by silicone replica technique and digital microscope (${\times}160$). Mann-Whitney test was executed (${\alpha}=0.05$). The mean${\pm}$standard deviation of marginal gap for premolars and molars were $112.5{\pm}8.6{\mu}m$ and $110.2{\pm}7.0{\mu}m$ in the 3D group and $83.2{\pm}4.4{\mu}m$ and $82.2{\pm}4.6{\mu}m$ in the CV group. There were statistically significant differences (p<0.05). As results, clinical application further improvement of 3D printing technique may be required.

Usefulness of 3-Dimensional Body Surface Scanning in the Evaluation of Patients with Pectus Carinatum

  • Song, Seung Hwan;Kim, Chong Hoon;Moon, Duk Hwan;Lee, Sungsoo
    • Journal of Chest Surgery
    • /
    • v.53 no.5
    • /
    • pp.301-305
    • /
    • 2020
  • Background: Radiographic modalities have been commonly used to evaluate pectus carinatum (PC), and compressive orthotic bracing is the most widely accepted treatment method. The aim of this study was to determine the efficacy of 3-dimensional (3D) body surface scanning as an alternative modality for the evaluation of PC. Methods: The medical records of 63 patients with PC who were treated with compressive orthotic bracing therapy between July 2017 and February 2019 were retrospectively analyzed. Using both 2-view chest radiography (posteroanterior and lateral view) and 3D body scanning, the height of maximal protrusion of the chest wall was measured both before and after 2 weeks of bracing therapy. The difference between the pre- and post-treatment measurements was calculated for both modalities, and these differences were compared and analyzed. Results: Based on the comparison between the pre- and post-treatment radiographs, bracing therapy produced favorable outcomes in all patients (p<0.001). The measurements obtained via 3D scanning were strongly correlated with those obtained via chest radiography (r=0.60). Conclusion: Based on the findings of this study, 3D body surface scanning appears to be an effective, radiation-free, and simple method for the post-treatment follow-up evaluation of PC, and thus can be considered an alternative to radiography.

Three-Dimensional Video Microscopy: Potential for Improved Ergonomics without Increased Operative Time?

  • Yasmina Samaha;Edward Ray
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.125-129
    • /
    • 2023
  • Three-dimensional (3D) video exoscopes are high-magnification stereo cameras that project onto monitors mounted in the operating room, viewable from different angles. Outside of plastic surgery, exoscopes have been shown to successfully improve the ergonomics of microsurgery, though sometimes with prolonged operating times. We compare a single surgeon's early experience performing free flap procedures from 2020 to 2021 using either a binocular microscope or a 3D video exoscope. Ten procedures were performed with the standard operating microscope and 8 procedures with the 3D exoscope. The microsurgeon, having minimal prior experience using an exoscope, reported less neck discomfort following the free flap procedures performed with the exoscope compared with the binocular surgical microscope. Total average operating time was comparable between the standard surgical microscope and the 3D exoscope (13.7 vs. 13.4 hours, p = 0.34). Our early experience using a 3D exoscope in place of a standard optical microscope demonstrated that the exoscope shows promise, offering an ergonomic alternative during microvascular reconstruction without increasing overall operating times. Future studies will compare free flap ischemia time between cases performed using the exoscope and the conventional binocular microscope. Medical Subject Headings authorized following words: free tissue flaps; operating rooms; ergonomics; microsurgery.

Design of a Prototype Jacket for Upper Extremity Load Reduction (상지 부하 감소를 위한 기능성 상의 프로토타입 디자인)

  • Park, Sunhee;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.4
    • /
    • pp.613-623
    • /
    • 2022
  • This study developed a functional prototype jacket designed to reduce loads on the upper extremities of workers performing repetitive motions in the same posture for extended periods of time. Dynamic taping lines were applied to the upper extremities, and three dimensional (3D) supporters were inserted in the abdomen and back waist areas corresponding to the core muscles. Clothing pressure on the upper-extremity dynamic taping lines was set to two levels (proto P1 and proto P2), and the 3D supporters were designed in three types (proto FW, proto FW/BW, proto FW/BW/BBX). According to the subjective pressure perceived on each part of the upper extremities, the level proto P1 pressure was preferred. The proto FW/BW/BBX 3D supporter was rated as excellent, and the perceived pressure was ranked as satisfactory. The prototype jacket performed upper-extremity load reduction when the upper-extremity clothing-pressure level was set to 1.8 kPa, 2.1 kPa, and 2.4 kPa on the upper arm, forearm, and wrist regions, respectively, and when 3D supporters were installed in the abdomen and back of the waist with the addition of a back band.