• 제목/요약/키워드: 3-Dimensional D.P.

검색결과 570건 처리시간 0.031초

자화 벡터 분포를 고려한 C.P.M(Convergence Purity Magnet)의 3차원 자계 분포 해석 (Analysis of 3-Dimensional Magnetic Field Distribution in C.P.M Considering Magnetization Vector Distribution)

  • 이철규;권병일;박승찬;윤태호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.241-243
    • /
    • 2000
  • In this paper, we analyze three-dimensional magnetic field distribution of a convergence purity maget(C.P.M) which is used for a cathode ray tube. The magnetization vector distribution of the C.P.M is obtained from the result of magnetization process analysis using the 2D F.E.M. Then the motion of electron beam passing through the inner space of the C.P.M is determined and compared with experimental result.

  • PDF

Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry

  • Naini, Farhad B.;Akram, Sarah;Kepinska, Julia;Garagiola, Umberto;McDonald, Fraser;Wertheim, David
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.23.1-23.8
    • /
    • 2017
  • Background: The aim of this study is to validate a new three-dimensional craniofacial stereophotogrammetry imaging system (3dMDface) through comparison with manual facial surface anthropometry. The null hypothesis was that there is no difference between craniofacial measurements using anthropometry vs. the 3dMDface system. Methods: Facial images using the new 3dMDface system were taken from six randomly selected subjects, sitting in natural head position, on six separate occasions each 1 week apart, repeated twice at each sitting. Exclusion criteria were excess facial hair, facial piercings and undergoing current dentofacial treatment. 3dMDvultus software allowed facial landmarks to be marked and measurements recorded. The same measurements were taken using manual anthropometry, using soluble eyeliner to pinpoint landmarks, and sliding and spreading callipers and measuring tape to measure distances. The setting for the investigation was a dental teaching hospital and regional (secondary and tertiary care) cleft centre. The main outcome measure was comparison of the craniofacial measurements using the two aforementioned techniques. Results: The results showed good agreement between craniofacial measurements using the 3dMDface system compared with manual anthropometry. For all measurements, except chin height and labial fissure width, there was a greater variability with the manual method compared to 3D assessment. Overall, there was a significantly greater variability in manual compared with 3D assessments (p < 0.02). Conclusions: The 3dMDface system is validated for craniofacial measurements.

골격성 3급 부정교합 환자에서 하악지시상분할골절단술 후 3D CT 영상을 이용한 하악과두 위치변화 분석 (THE EVALUATION OF THE POSITIONAL CHANGE OF THE MANDIBULAR CONDYLE AFTER BILATERAL SAGITTAL SPLIT RAMUS OSTEOTOMY USING THREE DIMENSIONAL COMPUTED TOMOGRAPHY IN SKELETAL CLASS III PATIENTS)

  • 장정록;최근호;박영준;김방신;유민기;국민석;박홍주;유선열;오희균
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권5호
    • /
    • pp.316-323
    • /
    • 2009
  • Purpose: This study was performed to evaluate three-dimensional positional change of the condyle using 3D CT after bilateral sagittal split ramus osteotomy (BSSRO) in skeletal class III patients. Patients and methods: Nine patients who underwent BSSRO for mandibular set-back in skeletal class III malocclusion without facial asymmetry were examined. Miniplates were used for the fixation after BSSRO. 3-D CT was taken before, immediately after, and 6 months after undergoing BSSRO. After creating 3D-CT images using V-works $4.0^{TM}$ program, axial plane, coronal plane, & sagittal plane were configured. Three dimensional positional change, from each plane to the condyle, of the nine patients was measured before, immediately after, and 6 months after undergoing BSSRO. Results: 1. The mean value of mandibular set-back for nine mandibular prognathism patients was 7.36 mm (${\pm}\;2.42\;mm$). 2. In the axial view, condyle is rotated inward immediately after BSSRO (p < 0.05), comparing with preoperative but outward 6 months after BSSRO comparing with postoperative (p < 0.05). 3. In the axial view, condyle is moved laterally immediately after BSSRO (p < 0.05), comparing with preoperative but regressed 6 months after BSSRO comparing with preoperative (p > 0.05). 4. In the frontal & coronal view, there is changed immediately after and 6 months after BSSRO, comparing with preoperative but no statistical difference. Conclusion: These results indicate that three-dimensional positional change of the condyle in skeletal class III patients is observed lateral displacement & inward rotation immediate after BSSRO, but the condyle in 6 months after BSSRO tends to regress to preoperative position.

Daily localization of partial breast irradiation patients with three-dimensional ultrasound imaging

  • Sayan, Mutlay;Vergalasova, Irina;Hard, Daphne;Wrigth, Heather;Archambault, Jessica;Gagne, Havaleh;Nelson, Carl;Heimann, Ruth
    • Radiation Oncology Journal
    • /
    • 제37권4호
    • /
    • pp.259-264
    • /
    • 2019
  • Purpose: Accurate localization of the lumpectomy cavity during accelerated partial breast radiation (APBR) is essential for daily setup to ensure the prescribed dose encompasses the target and avoids unnecessary irradiation to surrounding normal tissues. Three-dimensional ultrasound (3D-US) allows direct visualization of the lumpectomy cavity without additional radiation exposure. The purpose of this study was to evaluate the feasibility of 3D-US in daily target localization for APBR. Materials and methods: Forty-seven patients with stage I breast cancer who underwent breast conserving surgery were treated with a 2-week course of APBR. Patients with visible lumpectomy cavities on high quality 3D-US images were included in this analysis. Prior to each treatment, X-ray and 3D-US images were acquired and compared to images from simulation to confirm accurate position and determine shifts. Volume change of the lumpectomy cavity was determined daily with 3D-US. Results: A total of 118 images of each modality from 12 eligible patients were analyzed. The average change in cavity volume was 7.8% (range, -24.1% to 14.4%) on 3D-US from simulation to the end-of-treatment. Based on 3D-US, significantly larger shifts were necessary compared to portal films in all three dimensions: anterior/posterior (p = 7E-11), left/right (p = 0.002), and superior/inferior (p = 0.004). Conclusion: Given that the lumpectomy cavity is not directly visible via X-ray images, accurate positioning may not be fully achieved by X-ray images. Therefore, when the lumpectomy cavity is visible on US, 3D-US can be considered as an alternative to X-ray imaging during daily positioning for selected patients treated with APBR, thus avoiding additional exposure to ionizing radiation.

Accuracy and reliability of 2-dimensional photography versus 3-dimensional soft tissue imaging

  • Ayaz, Irem;Shaheen, Eman;Aly, Medhat;Shujaat, Sohaib;Gallo, Giulia;Coucke, Wim;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • 제50권1호
    • /
    • pp.15-22
    • /
    • 2020
  • Purpose: This study was conducted to objectively and subjectively compare the accuracy and reliability of 2-dimensional(2D) photography and 3-dimensional(3D) soft tissue imaging. Materials and Methods: Facial images of 50 volunteers(25 males, 25 females) were captured with a Nikon D800 2D camera (Nikon Corporation, Tokyo, Japan), 3D stereophotogrammetry (SPG), and laser scanning (LS). All subjects were imaged in a relaxed, closed-mouth position with a normal smile. The 2D images were then exported to Mirror® Software (Canfield Scientific, Inc, NJ, USA) and the 3D images into Proplan CMF® software (version 2.1, Materialise HQ, Leuven, Belgium) for further evaluation. For an objective evaluation, 2 observers identified soft tissue landmarks and performed linear measurements on subjects' faces (direct measurements) and both linear and angular measurements on all images(indirect measurements). For a qualitative analysis, 10 dental observers and an expert in facial imaging (subjective gold standard) completed a questionnaire regarding facial characteristics. The reliability of the quantitative data was evaluated using intraclass correlation coefficients, whereas the Fleiss kappa was calculated for qualitative data. Results: Linear and angular measurements carried out on 2D and 3D images showed excellent inter-observer and intra-observer reliability. The 2D photographs displayed the highest combined total error for linear measurements. SPG performed better than LS, with borderline significance (P=0.052). The qualitative assessment showed no significant differences among the 2D and 3D imaging modalities. Conclusion: SPG was found to a reliable and accurate tool for the morphological evaluation of soft tissue in comparison to 2D imaging and laser scanning.

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • 한국의학물리학회지:의학물리
    • /
    • 제34권4호
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

다양한 삼차원 프린팅 시스템으로 제작된 다이의 정확도 비교 (Accuracy of dies fabricated by various three dimensional printing systems: a comparative study)

  • 백주원;신수연
    • 구강회복응용과학지
    • /
    • 제36권4호
    • /
    • pp.242-253
    • /
    • 2020
  • 목적: 이 연구의 목적은 3D 프린팅으로 제작된 다이의 정확도를 인상재와 치과용 석고를 이용하여 제작한 기존 방식 다이와 비교하고 체적 변화를 평가하여 정확도를 비교하는 것이다. 연구 재료 및 방법: 치과용 모델 하악 우측 제1대구치를 준비하여 스캔한 뒤 polyetherketoneketone (PEKK)으로 기준 다이를 제작한다. 기존 방식 다이는 기준 다이를 polyvinylsiloxane로 인상채득한 뒤 Type IV 치과용 석고를 부었다. 3D 프린팅 시스템의 경우 기준 다이를 스캔하고 3개의 서로 다른 3D 프린터를 이용하여 모델로 변환하였다. 4가지 방법으로 각각 10개의 표본을 만들었다. 3D 표면매칭 소프트웨어를 사용하여 기준 다이와 중첩하였다. 통계 분석을 위해 Kruskal-Wallis test, Mann-Whitney U test를 수행하였다(P < 0.05). 결과: 기준 다이와 비교하여 기존 방식, Stereolithography로 제작된 다이를 제외하고는 각 방식으로 제작된 다이의 체적 변화가 상당히 있었다(P < 0.05). 기존 방식으로 제작된 다이는 3D 프린팅된 다이보다 체적 변화가 가장 적었다(P < 0.05). Stereolithography로 제작된 3D 프린팅 다이는 다른 3D 프린터 중에서 체적 변화가 가장 적었다(P < 0.05). 결론: 기존 방식의 다이는 3D 프린팅 다이보다 더 정확했지만 3D 프린팅 다이는 임상적으로 허용되는 범위 내에 있었다. 따라서 3D 프린팅 다이는 수복물 제작에 사용할 수 있다.

Recording natural head position using an accelerometer and reconstruction from computed tomographic images

  • Park, Il Kyung;Lee, Keun Young;Jeong, Yeong Kon;Kim, Rae Hyong;Kwon, Dae Gun;Yeon, Sunghee;Kwon, Kyung-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제43권4호
    • /
    • pp.256-261
    • /
    • 2017
  • Objectives: The concept of natural head position (NHP) was first introduced by Broca in 1862, and was described as a person's stable physiologic position "when a man is standing and his visual axis is horizontal." NHP has been used routinely for clinical examination; however, a patient's head position is random during cone-beam computed tomography (CBCT) acquisition. To solve this problem, we developed an accelerometer to record patients' NHP and reproduce them for CBCT images. In this study, we also tested the accuracy and reproducibility of our accelerometer. Materials and Methods: A total of 15 subjects participated in this study. We invented an accelerometer that measured acceleration on three axes and that could record roll and pitch calculations. Recorded roll and pitch data for each NHP were applied to a reoriented virtual image using three-dimensional (3D) imaging software. The data between the 3D models and the clinical photos were statistically analyzed side by side. Paired t-tests were used to statistically analyze the measurements. Results: The average difference in the angles between the clinical photograph and the 3D model was $0.04^{\circ}$ for roll and $0.29^{\circ}$ for pitch. The paired t-tests for the roll data (P=0.781) and the pitch data (P=0.169) showed no significant difference between the clinical photographs and the 3D model (P>0.05). Conclusion: By overcoming the limitations of previous NHP-recording techniques, our new method can accurately record patient NHP in a time-efficient manner. Our method can also accurately transfer the NHP to a 3D virtual model.

Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.901-911
    • /
    • 2021
  • Objective: To evaluate the technical applicability of a semiautomatic three-dimensional (3D) hybrid CT segmentation method for the quantification of right ventricular mass in patients with cardiovascular disease. Materials and Methods: Cardiac CT (270 cardiac phases) was used to quantify right ventricular mass using a semiautomatic 3D hybrid segmentation method in 195 patients with cardiovascular disease. Data from 270 cardiac phases were divided into subgroups based on the extent of the segmentation error (no error; ≤ 10% error; > 10% error [technical failure]), defined as discontinuous areas in the right ventricular myocardium. The reproducibility of the right ventricular mass quantification was assessed. In patients with no error or < 10% error, the right ventricular mass was compared and correlated between paired end-systolic and end-diastolic data. The error rate and right ventricular mass were compared based on right ventricular hypertrophy groups. Results: The quantification of right ventricular mass was technically applicable in 96.3% (260/270) of CT data, with no error in 54.4% (147/270) and ≤ 10% error in 41.9% (113/270) of cases. Technical failure was observed in 3.7% (10/270) of cases. The reproducibility of the quantification was high (intraclass correlation coefficient = 0.999, p < 0.001). The indexed mass was significantly greater at end-systole than at end-diastole (45.9 ± 22.1 g/m2 vs. 39.7 ± 20.2 g/m2, p < 0.001), and paired values were highly correlated (r = 0.96, p < 0.001). Fewer errors were observed in severe right ventricular hypertrophy and at the end-systolic phase. The indexed right ventricular mass was significantly higher in severe right ventricular hypertrophy (p < 0.02), except in the comparison of the end-diastolic data between no hypertrophy and mild hypertrophy groups (p > 0.1). Conclusion: CT quantification of right ventricular mass using a semiautomatic 3D hybrid segmentation is technically applicable with high reproducibility in most patients with cardiovascular disease.