• Title/Summary/Keyword: 3-D velocity model

Search Result 509, Processing Time 0.029 seconds

HI superprofiles of galaxies from THINGS and LITTLE THINGS

  • Kim, Minsu;Oh, Se-Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.68.3-69
    • /
    • 2021
  • We present a novel profile stacking technique based on optimal profile decomposition of a 3D spectral line data cube, and its performance test using the HI data cubes of sample galaxies from HI galaxy surveys, THINGS and LITTLE THINGS. Compared to the previous approach which aligns all the spectra of a cube using their central velocities derived from either moment analysis, single Gaussian or hermite h3 polynomial fitting, the new method makes a profile decomposition of the profiles from which an optimal number of single Gaussian components is derived for each profile. The so-called superprofile which is derived by co-adding all the aligned profiles from which the other Gaussian models are subtracted is found to have weaker wings compared to the ones constructed in a typical manner. This could be due to the reduced number of asymmetric profiles in the new method. A practical test made on the HI data cubes of the THINGS and LITTLE THINGS galaxies shows that our new method can extract more mass of kinematically cold HI components in the galaxies than the previous results. Additionally, we fit a double Gaussian model to the superprofiles whose S/N is boosted, and quantify not only their profile shapes but derive the ratio of the Gaussian model parameters, such as the intensity ratio and velocity dispersion ratio of the narrower and broader Gaussian components. We discuss how the superprofile properties of the sample galaxies are correlated with their other physical properties, including star formation rate, stellar mass, metallicity, and gas mass.

  • PDF

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

Bayesian estimation of kinematic parameters of disk galaxies in large HI galaxy surveys

  • Oh, Se-Heon;Staveley-Smith, Lister
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2016
  • We present a newly developed algorithm based on a Bayesian method for 2D tilted-ring analysis of disk galaxies which operates on velocity fields. Compared to the conventional ones based on a chi-squared minimisation procedure, this new Bayesian-based algorithm less suffers from local minima of the model parameters even with high multi-modality of their posterior distributions. Moreover, the Bayesian analysis implemented via Markov Chain Monte Carlo (MCMC) sampling only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature is essential for performing kinematic analysis of an unprecedented number of resolved galaxies from the upcoming Square Kilometre Array (SKA) pathfinders' galaxy surveys. A standalone code, the so-called '2D Bayesian Automated Tilted-ring fitter' (2DBAT) that implements the Bayesian fits of 2D tilted-ring models is developed for deriving rotation curves of galaxies that are at least marginally resolved (> 3 beams across the semi-major axis) and moderately inclined (20 < i < 70 degree). The main layout of 2DBAT and its performance test are discussed using sample galaxies from Australia Telescope Compact Array (ATCA) observations as well as artificial data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies.

  • PDF

Application of Continuous Stirred Tank Reactor Model for Water Quality Control and Management in Wetland Treatment (습지의 수질관리를 위한 연속교반탱크반응기 모델의 적용)

  • Kim, Kyung-Sub;Ahn, Tae-Jin;Kim, Min-Su
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • Continuous stirred tank reactor(CSTR) model which can be applied to control and management of the surface flow wetland is developed to simulate the water quality in this research. The model solution is obtained from the optimization model using the least-squares and 4th-order Runge-Kutta methods. The model is applied to simulate BOD and TSS in the wetland database of U.S. EPA, in which the hydraulic and water quality data are enough and the number of pond is just one for simple analysis of running results. The model is tested in two different cases, one constant volume case and another constant volume and flow rate case considering only reaction term, mass flux term and both reaction and mass flux terms respectively. It is found that the model simulates the real water quality very well with both reaction and mass flux terms rather than only reaction term and the settling velocity of TSS becomes $0.3{\sim}0.4\;m/d$. The model can be applied in wetlands treatment efficiently.

Development of a New Modeling Technique to Simulate 3-dimensional Electroplating System Considering the Effects of Fluid Flow

  • Lim, Kyung-Hwan;Lee, Minsu;Yim, Tai Hong;Seo, Seok;Yi, Kyung-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.408-415
    • /
    • 2019
  • Electroplating is a widely used surface treatment method in the manufacturing process of electronic parts and uniformity of the electrodeposition thickness is very crucial for these applications. Since many variables including fluid flow influence the uniformity of the film, it is difficult to conduct efficient research only by experiments. So many studies using simulation have been carried out. However, the most popular simulation technique, which calculates secondary current distribution, has a limitation on the considering the effects of fluid flow on the deposition behavior. And modified method, which is calculating a tertiary current distribution, is limited to a two-dimensional study of simple shapes because of the massive computational load. In the present study, we propose a new electroplating simulation method that can be applied to complex shapes considering the effect of flow. This new model calculates the electroplating process with three steps. First, the thickness of boundary layers on the surface of the cathode plane and velocity magnitudes at the positions are calculated from the simulation of fluid flow. Next, polarization curves of different velocities are obtained by calculations or experiments. Finally, both results are incorporated into the electroplating simulation program as boundary conditions at the cathode plane. The results of the model showed good agreements with the experimental results, and the effects of fluid flow of electrolytes on the uniformity of deposition thickness was quantitatively predicted.

Transport Parameters of 99Tc, 137Cs, 90Sr, and 239+240Pu for Soils in Korea

  • Keum, D.K.;Kim, B.H.;Jun, I.;Lim, K.M.;Choi, Y.H.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • To characterize quantitatively the transport of $^{99}Tc$ and the global fallout ($^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$) for soils in Korea, the transport parameters of a convective-dispersion model, apparent migration velocity, and apparent dispersion coefficient were estimated from the vertical depth profiles of the radionuclides in soils. The vertical profiles of $^{99}Tc$ were measured from a pot experiment for paddy soil that had been sampled from a rice-field around the Gyeongju radioactive waste repository in Korea, and the vertical depth distributions of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were measured from the soil samples that were taken from local areas in Korea. The front edge of the $^{99}Tc$ profiles reached a depth of about 12 cm in 138 days, indicating a faster movement than the fallout radionuclides. A weak adsorption of $^{99}Tc$ on the soil particles by the formation of Tc(VII) and a high water infiltration velocity seemed to have controlled the migration of $^{99}Tc$. The apparent migration velocity and dispersion coefficient of $^{99}Tc$ for the disturbed paddy soil were 2.88 cm/y and 6.3 $cm^2/y$, respectively. The majority of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were found in the top 20 cm of the soils even after a transport of about 30 years. The transport parameters for the global fallout radionuclides were 0.01-0.1cm/y ($^{137}Cs$), 0.09-0.13cm/y ($^{90}Sr$), and 0.09-0.18cm/y ($^{239+240}Pu$) for the apparent migration velocity: 0.21-1.09 $cm^2/y$ ($^{137}Cs$), 0.12-0.7$cm^2/y$ ($^{90}Sr$), and 0.09-0.36$cm^2/y$ ($^{239+240}Pu$) for the apparent dispersion coefficient.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

A Study of Smoke Movement in Tunnel Fires (터널내에서 화재 발생시 연기 거동에 대한 연구)

  • 김상훈;김성찬;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in tunnel, and their results were compared with those of numerical simulation. The 1/20 scale experiments were conducted under the Froude scaling since smoke movement in tunnel is governed by buoyancy farce. A numerical simulations were on performed 3D unstructured meshes with PISO algorithm and buoyant plume models. Results showed that data was in reasonable agreement with the numerical data of smoke velocity, temperature distribution, and clear height.

  • PDF

Flow Structure Interaction 3-D Reciprocating Compressor and Impact Analyses of Compressor Discharge Valve (압축기 토출벨브의 유체-구조 연계해석 및 충돌해석)

  • Octavianty, Ressa;Kim, Dong-Hyun;Park, Kang-Gyun;Jung, Won-Hyun;Ahn, Jae-Woo;Moon, Kyeong-Ho;Ko, Young-Pil;Kim, Hyeong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.633-640
    • /
    • 2007
  • In this paper, 3-D reciprocating compressor is taken into flow-structure interaction analysis. The full cycle process consisted of cylinder expansion and compression has been modeled without considering flow leakage through cylinder wall. Fully-coupled FSI analysis of this compressor model was iteratively solved and gives sufficient result with the experimental test. The study is emphasized to thoroughly investigate discharge valve motion, opening and closing, in order to determine discharge valve region which is prone to have high effective stress. The cylinder pressure is successfully validated before conducting impact analyses between discharge valve and other susceptible supported structure. Velocity profile has been obtained in FSI analysis is used as initial condition to carry out further impact analyses. Stress result of discharge valve and valve spring gives preliminary estimation of higher stress area due to its impact phenomena.

  • PDF