• Title/Summary/Keyword: 3-D spatial model

Search Result 604, Processing Time 0.024 seconds

Microsoft Kinect-based Indoor Building Information Model Acquisition (Kinect(RGB-Depth Camera)를 활용한 실내 공간 정보 모델(BIM) 획득)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • This paper investigates applicability of Microsoft $Kinect^{(R)}$, RGB-depth camera, to implement a 3D image and spatial information for sensing a target. The relationship between the image of the Kinect camera and the pixel coordinate system is formulated. The calibration of the camera provides the depth and RGB information of the target. The intrinsic parameters are calculated through a checker board experiment and focal length, principal point, and distortion coefficient are obtained. The extrinsic parameters regarding the relationship between the two Kinect cameras consist of rotational matrix and translational vector. The spatial images of 2D projection space are converted to a 3D images, resulting on spatial information on the basis of the depth and RGB information. The measurement is verified through comparison with the length and location of the 2D images of the target structure.

A Case Study on 3-D Modeling of the Orebody by using the 3D Modeler ('3D Modeler'를 사용한 광체의 3차원 모델링 사례연구)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • A three dimensional model for the orebody of an operating mine in Korea was constructed by using a program called '3-D Modeler'. The program allows the user to interactively construct a 3-D model of an orebody from its horizontal cross-sections. The 3-D Modeler is easily able to combine and display various spatial data for model construction. The result of modeling is strongly influenced by control points that correlate to the adjacent horizontal cross-sections. The control points are determined by comparing the geometrical shape of the adjacent cross-sections in conjunction with the geological features of the orebody. The resulting model can be evaluated in viewing the constructed object in three dimensional space or more closely evaluated by inspecting the cross-section. The model can iteratively be improved by modifying the shape of the cross-section and by using this new cross-section for the model building.

A Study on Urban Noise Visualization using 3D-GIS (3차원 GIS를 활용한 도시소음 시각화에 관한 연구)

  • Ryu, Keun-Won;Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.17-24
    • /
    • 2007
  • The noise problem is one of the major problems associated with large cities and is considered important factor not only in maintenance but also in development of cities. Accordingly, the noise map is being increasingly used in city planning and design. However, the existing two-dimensional noise maps only show regional, planar distribution of noise. This study presented a method to build a data model for analyzing and visualizing noise levels at fine scale considering the vertical distribution of noise in a building. By expanding the 2D topology concept used in conventional GIS to 3D, it suggested a 3D GIS data model that makes 3D spatial queries, analyses and visualization possible and applied the proposed approach to building a 3D noise information system. By building and testing the system, the study showed different functionalities including 3D spatial queries and 3D visualization of noise levels varying temporally or according as the height of sound-proof walls. In each case, the population exposed to noise was quantitatively computed to illustrate the potential in the areas of city planning and design.

  • PDF

The Object-Oriented Design & Implementation of Spatial Data Transformation System for the 3-D Representation of Underground Utilities (지하시설물의 3차원 표현을 위한 공간 데이터 변환 시스템의 객체 지향적 설계 및 구현)

  • 오승;강병익;정정화
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1996.06a
    • /
    • pp.79-109
    • /
    • 1996
  • In order to transform the underground utility data into the 3-D spatial objects, this thesis defined the type of the 3-D spatial objects and the storage structure of objects, and developed the spatial data transformation system that transforms the 2-D underground utility data into the pre-defined 3-D spatial objects through the Booch Method, an object-oriented development method. For this sake, the relational data model of ARC/INFO and the storage structure are analyzed, as well as the pre-requisites, required for the 3-D visualization of the underground utilities. Also, the 2-D underground utility data, saved in ARC/INFO, were transformed into the ASCII files through the internal pre-processing procedure, then used as the input data of the transformation system. In addition, to develop the transformation system, the object-oriented development methods are studied first and, then, applied to the system analysis and the design procedure with the Booch Method as a development method. Finally, the results of analysis and design procesure are implemented through AML, a ARC/INFO macro language, and C++, an object-oriented programing language. As a result of this study, the 3-D spatial objects that can visualize the 2-D utilities in 3-D, are acquired, and the adaptation of object-oriented development method to the system development procedure enabled an effective development prodedure.

  • PDF

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.489-498
    • /
    • 2022
  • Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Estimation of Seawater Intrusion Range in the Daechang Area Using 3D-FEMWATER Model (3D-FEMWATER 모델을 이용한 대창지역의 해수침투 범위추정)

  • Kim Kyoung-Ho;Park Jae-Sung;Lee Ho-Jin;Youn Ju-Heum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.3-13
    • /
    • 2005
  • The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.

Development of a Simulation Tool to Evaluate GNSS Positioning Performance in Urban Area

  • Wu, Falin;Liu, Gang-Jun;Zhang, Kefei;Densley, Liam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.71-76
    • /
    • 2006
  • With the rapid development of spatial infrastructure in US, Europe, Japan, China and India, there is no doubt that the next generation Global Navigation Satellite System (GNSS) will improve the integrity, accuracy, reliability and availability of the position solution. GNSS is becoming an essential element of personal, commercial and public infrastructure and consequently part of our daily lives. However, the applicability of GPS in supporting a range of location-sensitive applications such as location based services in an urban environment is severely curtailed by the interference of the 3D urban settings. To characterize and gain in-depth understanding of such interferences and to be able to provide location-based optimization alternatives, a high-fidelity 3D urban model of Melbourne CBD built with ArcGIS and large scale high-resolution spatial data sets is used in this study to support a comprehensive simulation of current and future GNSS signal performance, in terms of signal continuity, availability, strength, geometry, positioning accuracy and reliability based on a number of scenarios. The design, structure and major components of the simulator are outlined. Useful time-stamped spatial patterns of the signal performance over the experimental urban area have been revealed which are valuable for supporting location based services applications, such as emergency responses, the optimization of wireless communication infrastructures and vehicle navigation services.

  • PDF

A Study on Terrain Construction of Unmanned Aerial Vehicle Simulator Based on Spatial Information (공간정보 기반의 무인비행체 시뮬레이터 지형 구축에 관한 연구)

  • Park, Sang Hyun;Hong, Gi Ho;Won, Jin Hee;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1122-1131
    • /
    • 2019
  • This paper covers research on terrain construction for unmanned aerial vehicle simulators using spatial information that was distributed by public institutions. Aerial photography, DEM, vector maps and 3D model data were used in order to create a realistic terrain simulator. A data converting method was suggested while researching, so it was generated to automatically arrange and build city models (vWorld provided) and classification methods so that realistic images could be generated by 3D objects. For example: rivers, forests, roads, fields and so on, were arranged by aerial photographs, vector map (land cover map) and terrain construction based on the tile map used by DEM. In order to verify the terrain data of unmanned aircraft simulators produced by the proposed method, the location accuracy was verified by mounting onto Unreal Engine and checked location accuracy.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.