• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.029 seconds

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

Development of Immersive Augmented Reality interface for Minimally Invasive Surgery (증강현실 기반의 최소침습수술용 인터페이스의 개발)

  • Moon, Jin-Ki;Park, Shin-Suk;Kim, Eugene;Kim, Jin-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Secondary camera position optimization for observing the close space between objects (근접한 물체 사이의 공간 관찰을 위한 보조 카메라 위치 최적화)

  • Lee, Ji Hye;Han, Yun Ha;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.33-41
    • /
    • 2018
  • We present a secondary camera optimization method that helps the user exploring 3D virtual environment to precisely observe possible collisions between objects. The first role of our secondary camera is to automatically detect the area with the greatest possible collision. The second role is to show the detected area from a new angle of view that the current main camera cannot show. However, as the shapes of target objects are complex, the shape of the empty space between objects is also complex and narrow. It means that the space for the secondary camera position is highly constrained and its optimization can be very difficult. To avoid this difficulty and increase the efficiency of the optimization, we first compute a bisector surface between two target objects. Then, we limit the domain of the secondary camera's position on the bisector surface in the optimization process. To verify the utility of our method, we built a demonstration program in which the user can explore in a 3D virtual world and interact with objects by using a hand motion recognition device and conducted a user study.

Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping (신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발)

  • 허정훈;이건우;안재홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

Effects of the 3D Visual Feedback Exercise with Action Observation on the Posture Alignment and Cerebral Cortex Activation in Forward Head Posture (3D 시각적 피드백과 동작관찰을 이용한 운동이 전방머리자세의 자세 정렬과 대뇌겉질 활성도에 미치는 영향)

  • Kang, Hyojeong;Yang, Hoesong;Kim, Minkyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effects of exercise intervention combined with 3D visual feedback and motion observation on postural alignment and cerebral cortical activity in subjects with forward head posture (FHP). Methods : The study included 28 participants with FHP, randomly divided into a 3D visual feedback plus motion observation group (n=14) or control group (n=14). The experimental group received corrective exercise combined with 3D visual feedback and motion observation for FHP, three times a week for four weeks. We examined cervical spine radiographs in the lateral standing position with both arms crossed to measure the craniovertebral angle (CVA) and cervical lordosis (CL). Relative alpha (RA) and beta waves (RB) were measured by wireless dry EEG. Results : The CVA value was significantly different between the groups, and the CL value was significantly different only in the experimental group. RA and RB values were not significantly different before and after intervention in the control group. RB values were significantly decreased before and after intervention in the experimental group. Conclusion : Based on the results of this study, we suggest that interventions combined with motion observation and 3D visual feedback may be effective as exercise methods to improve postural alignment and cerebral activity in subjects with FHP. Further research is required to generalize our results on technical supplementation complemented with 3D visual feedback devices.

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

Synthesis and Anticancer Activity of Some Novel 1,3-Diaryl/heteroarylprop-2-en-1-one Derivatives

  • Kinger, Mayank;Park, Jeong Hoon;Lee, Jun Young;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2375-2380
    • /
    • 2014
  • In the present investigation, a series of some novel 1,3-diaryl/heteroarylprop-2-en-1-one derivatives (3a-j) have been synthesized and evaluated for their in vitro cytotoxicity against three cancer cell lines, two hepatocarcinoma cell lines HUH-7, Hep-3b and one leukemia cancer cell line MOLT-4. Based on these results, structure-activity relationship (SAR) was studied on modification of $R^1$ and $R^2$ to identify the compound with maximum potency. Amongst the compounds, 3b and 3d strongly inhibited the growth of Hep-3b and MOLT-4 cells with $IC_{50}$ value of 3.39 and $3.63{\mu}M$ respectively. The results obtained from the inhibitory study had further been supported by the reactive oxygen species (ROS) measurement using flow cytometry in MOLT-4 cells. These observations collectively reveal that compounds comprising 1,3-diarylprop-2-en-1-one framework with pyrazole ring at position-3 and heteroaryl/aryl substituents at position-1 can be used as promising anticancer agents.

Implications Deduction through Analysis of Reverse Engineering Process and Case Study for Prefabrication and Construction of Freeform Envelop Panels (비정형 건축물의 외장 패널의 선제작과 시공을 위한 역설계 프로세스와 사례 분석을 통한 시사점 도출)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2016
  • 3D laser scanning can be used for scanning the freeform surface and building a model from which the measurements could be taken, in order to solve the difficulty with getting access to the exact freeform shape and position data of the complex building envelope. The shape making process using 3D scanning is as follows: point cloud, mesh surface segmentation, NURBS(Non-Uniform Rational B-spline) surface generation, and parametric solid model generation. In this research, we review previous studies, reverse engineering notion, importance of reverse engineering usage for freeform envelope, and previous cases in order to identify the detail reverse engineering process for prefabrication and construction of freeform panels using 3D laser scanning technology. Therefore, the purpose of this research is to present a basic information which should be considered during design and construction phase and improve quality and constructibility of freeform building by analyzing the reverse engineering process and case study for prefabrication and construction of freeform panels using 3D laser scanning. The research results will enable 3D shape engineering and design parameterization using reverse engineering to be used in various construction projects.

Precision Speed Control of PMSM for Stimulation of the Vestibular System Using Rotatory Chair (전정기관 자극용 회전자극기를 위한 PMSM의 정밀 속도제어)

  • 이태호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.628-631
    • /
    • 2000
  • A new control method for precision robust speed control of a PMSM(Permanent Magnet Synchronous Motor) using load torque observer is presented. With this system we can obtain more reliable eye moving singal(nystagmus) Until now rotating chair system which is called 2D-optokinetic stimulator is used to make dizzincess. However an inclined rotating chair system witch is 3D-optokinetic stimulator is needed to obtain the precise dizziness data. This 3D-optokinetic sitimulator include unbalanced load aused by unbalanced center of mass. For this case new compensation method is considered to obtain robust speed control using load torque observer. To reduce the effect of this disturbance we can use dead-beat observer which has high gain. The application of the load torque observer is published in [1] for position control. A problem of using speed information such as amplifying effect of noise is reduce by moving average process. The experimental results are depicted in this paper to show the effect of this proposed algorithm.

  • PDF