• 제목/요약/키워드: 3-D numerical method

검색결과 1,416건 처리시간 0.03초

최소자승법을 이용한 이중층 마이크로스트립 방향성 결합기의 설계 (Design of Directional Couplers in Bilevel Microstrip Using the Least Squares Residual Method)

  • 양기덕;김원기;이용민;나극환;신철재
    • 한국전자파학회논문지
    • /
    • 제9권2호
    • /
    • pp.253-264
    • /
    • 1998
  • 이중충 마이크로스트립 선로를 이용하여 기존의 edge-coupled 커플러가 가질 수 없는 임의의 큰 결합도와 광 대역 특성을 갖는 broadside-coupled 하이브리드 커플러의 설계방볍을 제안하였다. 설계에 필요한 물리적 치수 들은 커플러의 특성 파라메터들을 variational method의 한 방볍인 최소자승볍 (least squares residual method)과 eigenvalue 문제 해석법을 이용한 수치해석 방볍을 통하여 구하였으며, 커플러의 구조와 차원에 따 른 이론적인 계산값을 보이고 결합비 -3[dB], 중심주파수 1 GHz로 제작한 실측치와의 비교를 통해 제시된 설 계방법의 타당성을 입증하였다.

  • PDF

Epipolar 기하학을 이용한 2차원 투영 데이터의 3차원 표현에 관한 연구 (A Study on the 3D Representation of 2D Projection Data using Epipolar Geometry)

  • 유선국;;김남현;김용욱;김희중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권5호
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, the epipolar geometry, genera17y used as a pin-hole camera model, is newly adapted to our proposed method that enables the affine reconstruction of the 3D object from two projected views. The proposed method models the projective projection of inherent X-ray imaging system, obviates the need to attach artifirially constructed material on the body, and requires none of the prior-knowledge regarding to intrinsic and extrinsic parameters of two X-ray imaging systems. The optimum numerical solution is obtained by applying the least mean square estimator to corresponding points on two projected X-ray planes. The performance of this proposed method is Quantitatively analyzed using computer synthesized model of Cochlear implantation electrodes. In simulated experiments, the propnsed method is insensitive to the added random noise, the scaling factor change, the center point change, and rotational angular change between two projection planes, as well as enables the stable 3D reconstruction in least square sense even in worst testing cases.

표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계 (A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG)

  • 임설;서정일;김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

개별요소법을 이용한 시멘트 혼합토의 수치모델링 (Numerical Modeling of Soil-Cement based on Discrete Element Method)

  • 정상국
    • 한국지반신소재학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-42
    • /
    • 2016
  • 기존 개별요소해석은 암석과 조립재료를 대상으로, 미시거동 분석과 응용을 위한 입상체 역학 및 관련 수치모델의 개발 차원에서 수행되었으나, 시멘트 혼합토(soil-cement)의 본딩 효과를 고려한 분석은 미흡한 것으로 확인되었다. 본 연구에서는 기존의 한계성을 극복하기 위하여 개별요소법 수치모델 프로그램 $PFC^{3D)}$을 이용한 시멘트 혼합토의 본딩 효과 및 실내시험 결과와의 분석을 수행하였다. 시멘트 혼합토에 대한 실내시험은 재령일을 고려한 일축압축강도시험과 시멘트 함유량에 따른 일축압축강도시험을 수행하였으며, 각 실내시험 조건에 적합한 개별요소해석을 수행하였다. 본 연구결과, 개별요소법은 지반공학적 측면에서, 혼합토의 본딩 효과에 대한 미시적 거동(micro behavior) 및 전체적 거동(macro behavior)의 예측뿐아니라, 수치시험실(numerical laboratory)로서 활용될 수 있음을 확인할 수 있었다.

터널발파굴착시 수치해석에 의한 구조물의 영향평가 (Influence of Adjacent Structures using Numerical Method during funnel Blasting)

  • 김학문
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.274-278
    • /
    • 2003
  • 터널의 3차원 해석을 통한 발파진동 평가시에 최대진동속도를 산정하기 위해 구조물 하부에서의 진동응답이 감소하는 터널직경의 3D위치까지의 경계를 설정하여 수치해석을 수행하였다. 구조물하부에서 터널발파시 진동성분이 장약으로부터 구형형상으로 전파되어나갈 때 구조물에서 발파막장의 거리가 터널직경의 약 1-2배일 때 최대진동속도를 나타내었으며, 수치해석시에는 속도성분영역을 확인하여 정확한 구형의 발파진동속도영역의 산정이 중요한 것으로 나타났다. 또한, 속도성분과 기존의 발파진동전파식을 비교한 결과 터널심도 15m, 25m일 경우에는 유사하게 나타났으나, 터널심도 35m일 경우에는 기존 발파진동전파식과는 상당한 차이를 보이므로 터널심도가 터널직경의 5배 이상일 경우에는 기존발파진동전파식에 의한 속도성분이 수치해석에 비해 과다하게 산정됨을 알 수 있었다.

  • PDF

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

Implementation of Q-Tensor Model into 3-D Finite Element Method (FEM) Numerical Solver

  • Shin, Woo-Jung;Yoon, Hyung-Jin;Won, Tae-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.509-512
    • /
    • 2007
  • In this paper, we report our successful implementation of Q tensor model in threedimensional finite element method (FEM) simulator. The 3D-FEM Q tensor-model-based simulation revealed that the spaly-to-bend transition occurs only at 4 V while the vector-model based FEM solver provides an erroneous transition voltage of 8 V.

  • PDF

3차원 범용 유동해석 프로그램의 개발 - CLSVOF 상경계면 추적법의 적용 (Development of a General Purpose Program for 3-D Flows -Implementation of a CLSVOF Interface Tracking Method)

  • 성명호;손기헌;허남건
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.28-34
    • /
    • 2002
  • A general purpose program for computing 3-D flows has been extended for two-phase flows with topologically complex interfaces. The 3-D interfaces are tracked by employing a coupled level set and volume-of-fluid (CLSVOF) method which not only can calculate an interfacial curvature accurately but also can achieve mass conservation well. The program has been tested through the computations of bubbles rising in a liquid. The numerical results are found to compare well with the results reported in the literature.