• Title/Summary/Keyword: 3-D flows

Search Result 473, Processing Time 0.028 seconds

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

A Study on the BOD Removal Characteristics of Aerobic Submerged Biofilter (Media를 충전(充塡)한 간접폭기식(間接曝氣式) 침지여상(浸漬濾床)에 의한 BOD제거 특성에 관한 연구)

  • Yang, Sang Hyun;Kwon, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.669-678
    • /
    • 1994
  • The BOD removal characteristics of submerged biofilters filled with three kinds of filter media respectively were experimentally examined with constant temperature, pH value and variable BOD loading and recirculation ratio. Obtained results are as follows; 1. The BOD removal ratio decreases with the increasing $BOD_5$ volumetric loading rate, and the loading rate for the BOD removal over 90% is lower thean $1.6kg{\cdot}BOD_5/m^3{\cdot}d$ for the plastic media of Netring and cubic wire meshes. This is a much large value than $0.3{\sim}0.8kg{\cdot}BOD_5/m^3{\cdot}d$ for conventional activated sludge process. The required submerged biofilter volume is found to be much samller than that of conventional activated sludge process. 2. The decreasing order of BOD removal is Netring (random plastic media), cubic wire meshes (plastic module), and then gravel (stone media). This is mainly due to the media characteristics such as void ratio, specific surface area and media shapes. 3. The $BOD_5$ removal rate increases with the recircuration ration, but the rate of increases becomes samaller as the recirculation ratio increases over 20. When $BOD_5$ loading is $1.8kg{\cdot}BOD_5/m^3{\cdot}d$, the required recirculation rationto obtain 90% $BOD_5$ removal is about 20 for Netring and it was about 30 for cubic wire meshes. 4. Reynold's Number increases with recirculation ratio, and the Reynold's Numbers corresponding to the recircuration ratio of 10~50 are less than 52, showing laminar up flows in the filter. The settled and effluent sludges increase with increase of Reynol's Number, and there are the definite Reynold's Numbers at which the settling sludge concentrations become nearly constant respectively in each filters. 5. In this submerged biofilter system, small volume of sludge hopper can be substituted for a separated settling tank.

  • PDF

A Study on Field Experiment and Numerical Modeling for Efficiency Analysis of Selective Withdrawal in Imha Reservoir (임하호 선택취수 효과분석을 위한 현장실험 및 수치해석 연구)

  • Kim, Tae Won;Kim, Young Do;Yi, Yong-Kon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.113-121
    • /
    • 2012
  • When a heavy rain brings flooding, a high turbid water is flowing into a reservoir. In this study, the effectiveness of the intake structures for the selective withdrawal from the various levels of a stratified reservoir was evaluated by the field experiments and the numerical modeling of the three-dimensional approaching flows. The temperature, the turbidity, and the velocity fields for the selective withdrawal were measured using both YSI6600EDS and YSI6600ADV, respectively. A threedimensional model, FLOW-3D, was used to predict the performance of the intake tower in Imha reservoir. The comparisons of the vertical velocity field showed a good agreement with the field measurements. The efficiency of the turbid-water elimination of the selective withdrawal method from low levels was higher up to 46% than that of the surface withdrawal. From the analysis of the numerical simulation, the efficiency of turbidity elimination increased by 10% for the selective withdrawal from middle levels, and by 30% from low levels. These results showed that the selective withdrawals from middle and low levels are more effective than the surface-water intake. The similar results were obtained by the one-dimensional model, SELECT, which is much more computationally time-efficient.

Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D (TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구)

  • Jung, Dae Jin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.635-644
    • /
    • 2016
  • This study investigates variation of flow characteristics due to variation of branch channel width and discharge ratio at bifurcation channel using 2D numerical model. The calculated result considering secondary flow is more accurate and stable than without considering one. The diversion flow rate ($Q_3/Q_1$) is reduced by flow stagnation effect according to the interaction of the secondary flow and flow separation zone in branch channel. The less upstream inflow or the lower upstream velocity, the bigger variation of diversion flow rate by changing branch channel width. At uniform downstream boundary condition, the rate of change in Froude number of downstream of main channel($Fr_2$)-diversion flow rate ($Q_3/Q_1$) relations is similar about -2.4843~-2.6675 when branch channel width ratio (b/B) is decreased. At uniform diversion flow rate ($Q_3/Q_1$) condition, the width of recirculation zone in branch channel is decreased when branch channel width ratio (b/B) is decreased. The less upstream inflow in the case of increasing branch channel width or the narrower branch channel width in the case of increasing upstream inflow, the bigger reduction ratio of recirculation zone width. At uniform inflow discharge ($Q_1$) condition, diversion flow rate, the width and length of recirculation zone in branch channel are decreased when branch channel width ratio (b/B) is decreased.

An Analysis of the Linked Structure for Technology-Industry in National R&D Projects (국가 R&D과제의 기술-산업 연계구조분석)

  • Lee, Mi-Jeong;Lee, June-Young;Kim, Do-Hyun;Shim, We;Jeong, Dae-Hyun;Kim, Kang-Hoe;Kwon, Oh-Jin;Moon, Yeong-Ho
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.2
    • /
    • pp.443-460
    • /
    • 2012
  • Technology is closely related to industrial development and various studies have been performed to understand the linked structure for knowledge flow between the technology and industry. The research, however, wasn't carried out to flow for Korea National Research and Development projects. In this study, linked structure for technology-industry was discussed by utilizing patent data performed in actual National R&D using NTIS Information of the national research and development, and then it was analyzed how knowledge flows between the technology and industry are flowing. It should be defined that the individual applications expected by researchers at the start of the research and technology-industry applications actually applied from the research performances after research was completed. As a result, it was confirmed in most projects the flow of knowledge was occurring to predicted industries before the start of the R&D. However, the technology was applied to unexpected industry in three industries such as Y09(medical, precision and optical instruments), Y10(electrical and mechanical equipment), Y11(automotive and transportation equipment). The results of this study will be able to contribute to planning for efficient investment strategy of technology-industry by investigating the technology-industry knowledge flow relations of national R&D projects.

  • PDF

Analysis of weighted usable area and estimation of optimum environmental flow based on growth stages of target species for improving fish habitat in regulated and non-regulated rivers (조절 및 비조절 하천의 어류 서식처 개선을 위한 성장 단계별 가중가용면적 분석 및 최적 환경생태유량 산정)

  • Jung, Sanghwa;Ji, Un;Kim, Kyu-ho;Jang, Eun-kyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.811-822
    • /
    • 2019
  • Environmental flows in the downstream sections of Yongdam Dam, Wonju Stream Dam, and Hongcheon River were estimated with selected target fish species such as Nigra for the site of Yongdam Dam, Splendidus for the site of Wonju Stream Dam, and Signifer for the site of Hongcheon River by considering endangered and domestic species. Physical habitat analysis was performed to estimate environmental flows for the study sites by applying the Physical Habitat Simulation (PHABSIM) and RIVER2D which combined hydraulic and habitat models. Based on the monitored data for ecological environment, the Habitat Suitability Index (HSI) for the target species was estimated by applying the Instream Flow and Aquatic Systems Group (IFASG). In particular, based on the result of fish monitoring, the HSI for each stage of the growth for target species was analyzed. As a result, the Weighted Usable Area (WUA) was maximized at $4.9m^3/s$ of flow discharge during spawning, $5.8m^3/s$ during the period of juvenile, and $8.9m^3/s$ during the adult fish season at the downstream section of Yongdam Dam. The result of the Wonju Stream Dam showed an optimal environmental flow of $0.4m^3/s$, $1.0m^3/s$, and $1.5m^3/s$ during the period of spawning, juvenile, and adult. The habitat analysis for the site of Hongcheon River, which is a non-regulated stream, produced an optimum environmental flow of $5m^3/s$ in the spawning period, $4m^3/s$ in the juvenile stage and $6m^3/s$ in the adult stage.

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

Massive Fluid Simulation Using a Responsive Interaction Between Surface and Wave Foams (수면거품과 웨이브거품의 미세한 상호작용을 이용한 대규모 유체 시뮬레이션)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.29-39
    • /
    • 2017
  • This paper presents a unified framework to efficiently and realistically simulate surface and wave foams. The framework is designed to first project 3D water particles from an underlying water solver onto 2D screen space in order to reduce the computational complexity of determining where foam particles should be generated. Because foam effects are often created primarily in fast and complicated water flows, we analyze the acceleration and curvature values to identify the areas exhibiting such flow patterns. Foam particles are emitted from the identified areas in 3D space, and each foam particle is advected according to its type, which is classified on the basis of velocity, thereby capturing the essential characteristics of foam wave motions. We improve the realism of the resulting foam by classifying it into two types: surface foam and wave foam. Wave foam is characterized by the sharp wave patterns of torrential flow s, and surface foam is characterized by a cloudy foam shape even in water with reduced motion. Based on these features, we propose a technique to correct the velocity and position of a foam particle. In addition, we propose a kernel technique using the screen space density to efficiently reduce redundant foam particles, resulting in improved overall memory efficiency without loss of visual detail in terms of foam effects. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.