• Title/Summary/Keyword: 3-D flows

Search Result 473, Processing Time 0.029 seconds

Natural Purification Treatment using Soil Brick with Combined Effective Microorganisms and Emergent Plants (복합유용미생물 및 수생식물을 활착시킨 흙블록을 이용한 자연정화 처리방법 연구)

  • Sim, Hagjae;Oh, Yongkeol;Park, Chulhwi;Kang, Wonsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.543-550
    • /
    • 2015
  • In this study, using soil brick with combined effective microorganisms and emergent plants was identified which it can increase the effect of conservation and improvement of water. Lab-test was consist of four kind of reactors and each of reactors were A(rawwater), B(soil brick), C(emergent plant) and D(soil brick+emergent plant). Iris pseudoacorus, Phargmites australis, Typha angustifolia and Zizania latifolia were used for emergent plant. Evaluation of application on various environment were performed on agricultural waterway and pond. The pH measurement test of soil brick was performed due to evaluate whether a strong alkaline water flows out of the soil brick. Result of lab-test, removal efficiency of D was better than removal efficiency of A presenting 20.9%, 27.9% 21.5%, 33.8% and 58.4% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. Removal efficiency of soil brick on agricultural waterway was revealed to be 49.5%, 45.0%, 43.7%, 37.3% and 28.6% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. And removal efficiency of soil brick on the pond was revealed to be 12.7%, 10.5%, 9.32%, 10.4% and 36.3% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. Result of pH measurement test of soil brick was neutral which was about 6 to 8.

Study of the Kinetic Effects on Relativistic Unmagnetized Shocks using 3D PIC Simulations

  • Choi, Eun Jin;Min, Kyoung W.;Choi, Cheongrim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • Shocks are ubiquitous in astrophysical plasmas: bow shocks are formed by the interaction of solar wind with planetary magnetic fields, and supernova explosions and jets produce shocks in interstellar and intergalactic spaces. The global morphologies of these shocks are usually described by a set of magnetohydrodynamic (MHD) equations which tacitly assumes local thermal equilibrium, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. While thermal equilibrium can be achieved easily in collisional fluids, it is generally believed that collisions are infrequent in astrophysical settings. In fact, shock widths are much smaller than collisional mean free paths and a variety of kinetic phenomena are seen at the shock fronts according to in situ observations of planetary shocks. Hence, both the MHD and kinetic equations have been adopted in theoretical and numerical studies to describe different aspects of the physical phenomena associated with astrophysical shocks. In this paper, we present the results of 3D relativistic particle-in-cell (PIC) simulations for ion-electron plasmas, with focus on the shock structures: when a jet propagates into an unmagnetized ambient plasma, a shock forms in the nonlinear stage of the Weibel instability. As the shock shows the structures that resemble those predicted in MHD systems, we compare the results with those predicted in the MHD shocks. We also discuss the thermalization processes of the upstream flows based on the time evolutions of the phase space and the velocity distribution, as well as the wave spectra analyses.

  • PDF

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.

A Flow Rate Estimation Model Development and Its Application in the Ubiquitous Environment (유비쿼터스 환경에서의 교통류율 산정모형 개발 및 활용)

  • Choi, Kee Choo;Kim, In Su;Lee, Jung Woo;Shim, Sang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.459-465
    • /
    • 2009
  • u-T (ubiquitous transportation) environment can be envisioned as an advanced version of ITS environment and be expected to provide more advanced transportation service in a ubiquitous manner. As a basic necessity to measure traffic flow in both environments, a flow estimation method was proposed. Flows have been measured in existing ITS and in a new u-T environments and some differences were investigated using simulation technique. In the interrupted traffic situation, the flow rate of u-T is 3.58% higher than that in ITS environment. Both MARE and MAE, which were used as measure of effectiveness, in u-T were better since the results are 31.4% and 31.1% lower than in ITS, respectively. Besides the equality coefficient in u-T was 1.9% higher than that in ITS. Such being the case, the flow rate measured in u-T using U-TSN is more reliable and can be expected to be successfully used for transportation system design or traffic operation areas.

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

A Study on the Liquid-Liquid Extraction by Use of Hydrophobic Hollow Fiber Module (소수성 중공사 모듈에 의한 액-액 추출에 관한 연구)

  • Kim, Young-II;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.237-244
    • /
    • 1996
  • Liquid-liquid extractions by use of microporous hollow fiber modules are fast compared with conventional extraction equipment because of the large surface area per volume. In these modules, the extractant and feed can be contacted at high speed and two flows are completely independent, so there are no problems with loading and channeling. In this paper, it was investigated the extraction selectivities for liquid-liquid extraction of Fe(II) and Ni(II) from dilute aqueous solution into TOA (tri-n-octylamine) and EHPNA (bis(2-ethylhexyle)hydrogenphosphite) as organic extractants by using the hydrophobic hollow fiber module. To determine the rate controlling step for mass transfer in hollow fibers, we also examined the effect of inside and outside flow rates of the hollow fiber module. From these experiments, we identified for the extraction of system with high partition coefficient in hydrophobic hollow fibers, mass transfer in the inside aqueous feed dominated the overall mass transfer, and in this paper, correlation between $K_w$ and $v_t$ was obtained as $K_w{\frac{d}{D}}=6.22\(\frac{d^2v_t}{LD}\)^{1/3}$ On the other hand, for the system with low partition coefficient, the resistance in the inside of hollow fibers was much less than membrane resistance because the extraction was not simple in the micropore. Thus, for systems with high partition coefficients, hydrophobic hollow fibers would be a better choice.

  • PDF

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2023-2033
    • /
    • 2021
  • Objective: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. Methods: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. Results: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4++NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. Conclusion: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.